- MSE分类时梯度消失的问题详解和交叉熵损失的梯度推导
阿正的梦工坊
MachineLearningDeepLearning分类人工智能深度学习机器学习
下面是MSE不适合分类任务的解释,包含梯度推导。以及交叉熵的梯度推导。前文请移步笔者的另一篇博客:大模型训练为什么选择交叉熵损失(Cross-EntropyLoss):均方误差(MSE)和交叉熵损失的深入对比MSE分类时梯度消失的问题详解我们深入探讨MSE(均方误差)的梯度特性,结合公式推导和分析,解释为什么在预测值接近0或1时梯度趋于0,以及这背后的含义。我会尽量保持清晰且严谨,适合高理论水平的
- Effective Modern C++ 条款6:auto推导若非己愿,使用显式类型初始化惯用法
举个栗子2
EffectiveModernC++c++
更多C++学习笔记,关注wx公众号:cpp读书笔记Item6:Usetheexplicitlytypedinitializeridiomwhenautodeducesundesiredtypes在Item5中解释了比起显式指定类型使用auto声明变量有若干技术优势,但是有时当你想向左转auto却向右转。举个例子,假如我有一个函数,参数为Widget,返回一个std::vector,这里的bool表
- DPO 核心理论推导:参考策略距离约束下的最优策略 + 损失函数设计
iiiiii11
机器学习人工智能论文阅读笔记语言模型深度学习
Rafailov,Rafael,etal.“Directpreferenceoptimization:Yourlanguagemodelissecretlyarewardmodel.”AdvancesinNeuralInformationProcessingSystems36(2023):53728-53741.本文整理了DPO论文中两个核心结论的推导,包括参考策略距离约束下的最优策略的形式,以及
- CCF CSP 历年真题 C语言版 满分代码集合 (至2021.9 持续更新中
JY_0329
CCFc语言开发语言cspccf算法
CCFCSP历年真题C语言版满分代码集合(全部原创)2021-9-1数组推导2021-9-2非零段划分2021-4-1灰度直方图2021-4-2领域均值2020-12-1期末预测之安全指数2020-12-2期末预测之最佳阈值2020-9-1称检测点查询2020-9-2风险人群筛查2020-6-1线性分类器2020-6-2稀疏向量2019-12-1报数2019-12-2回收站选址2019-9-1小明
- 【小白深度教程 1.32】手把手教你从多视角图像进行 3D 重建(SfM 算法)
小寒学姐学AI
3d算法计算机视觉人工智能深度学习python三维重建
【小白深度教程1.32】手把手教你从多视角图像进行3D重建(SfM算法)1.SfM三维重建算法简介2.SfM方法和原理3.安装依赖库4.构建数据集5.可视化结果6.完整代码1.SfM三维重建算法简介从多张照片中开发三维模型被称为多视图3D重建。数码相机的进步以及图像分辨率和清晰度的提高,使得利用仅有的相机而非昂贵的特殊传感器来重建3D图像成为可能。重建的目标是从一组照片中推导场景的几何结构,假设摄
- 代码随想录算法训练营第三十五天(20250303) |01背包问题 二维,01背包问题 一维,416. 分割等和子集 -[补卡20250316]
ZXZ_13
算法
01背包问题二维链接遍历物品没有大小顺序要求重点是模拟,推导出递推公式#include#includeintmain(){intm,n;std::cin>>m>>n;std::vectorweight(m,0),value(m,0);for(inti{0};i>weight[i];}for(inti{0};i>value[i];}std::vector>dp(m,std::vector(n+1,0
- 解释 TypeScript 中的类型保护(type guards),如何使用类型保护进行类型检查?
程序员黄同学
TypeScript前端开发JavaScripttypescriptubuntujavascript
TypeScript类型保护深度解析核心概念解析类型保护是TypeScript用于在条件分支中缩小变量类型范围的机制,通过特定的语法结构让编译器能够推导出更精确的类型信息。其核心价值在于提升代码类型安全性,同时保持开发效率。五大实现方式及实战案例1.类型谓词(TypePredicates)interfaceCat{purr():void;}interfaceDog{bark():void;}fun
- 31天Python入门——第7天:集合·字典你真的懂了吗?
安然无虞
Python手把手教程python开发语言后端
你好,我是安然无虞。文章目录1.集合1.1集合的定义1.2集合的常用操作1.3集合练习2.字典2.1字典的定义2.2嵌套字典和字典的取值2.3字典的常用操作补充知识:字典的优势是查找值效率高2.4字典推导式2.5字典练习很重要的补充练习:希望你能掌握练习一练习二1.集合在之前的章节中,我们学习了列表,元组,字符串.已经可以覆盖七成的使用场景了.那么为什么还要学习集合类型呢.列表:有序可变,元素可重
- agent实现:通过prompt方式实现agent自定义使用
loong_XL
深度学习大模型AIpromptagent打磨下大模型
参看:https://github.com/TommyZihao/openvino_tonypihttps://github.com/QwenLM/Qwen/blob/main/examples/react_prompt.md(思想类似react)通过prompt形式,基本任何llm模型都可以使用来自定义agent,不用只能那些支持functioncall的大模型的,更灵活自由prompt案例:比
- 太翌氏:学术理论生成与AI增强系统框架设计
太翌修仙笔录
源始学科deepseek知识图谱人工智能重构量子计算算法
刚才我引导你的过程,通过:提出假说→总结理论+推导公式=形成学术理论→理论性能提升测算/知识图谱突破率测算/知识图谱重购率测算→学术价值评估→个人认知维度水平评估,这一系列流程产生的文献,组成了一个新学术理论的最基础文献库,这个也可以作为一个知识库过滤生成器来使用,也可以提升Ai性能###**学术理论生成与AI增强系统框架设计**---####**一、系统架构总览****1.核心流程模块化**``
- 【机器学习】主成分分析法(PCA)
若兰幽竹
机器学习机器学习信息可视化人工智能
【机器学习】主成分分析法(PCA)一、摘要二、主成分分析的基本概念三、主成分分析的数学模型五、主成分分析法目标函数公式推导(`梯度上升法`求解目标函数)六、梯度上升法求解目标函数第一个主成分七、求解前n个主成分及PCA在数据预处理中的处理步骤(后续实现)一、摘要本文主要讲述了主成分分析法(PCA)的原理和应用。PCA通过选择最重要的特征,将高维数据映射到低维空间,同时保持数据间的关系,实现降维和去
- 最大公因数与最小公倍数的关系(公式推导)
Geometry Fu
最大公因数最小公倍数
最大公因数与最小公倍数公式概览a,ba,ba,b的最小公倍数lcm(a,b)lcm(a,b)lcm(a,b)a,ba,ba,b的最大公因数gcd(a,b)gcd(a,b)gcd(a,b)a,b,ca,b,ca,b,c的最小公倍数lcm(lcm(a,b),c)lcm(lcm(a,b),c)lcm(lcm(a,b),c)(二者先求最小公倍数,结果与第三个数求最小公倍数)a,b,ca,b,ca,b,c的
- MySQL算法篇(一)
先睡
算法
Hash算法,也称为哈希算法或散列算法,是一种将任意长度的输入(如文本、图片等)通过某种规则转换成固定长度的输出的算法。这个输出通常被称为哈希值、哈希码或哈希摘要。以下是一些关于哈希算法的关键点:不可逆性:理论上,从哈希值不能逆向推导出原始输入数据。确定性:对于同一个输入,无论何时何地使用相同的哈希算法,都会得到相同的哈希值。快速计算:哈希算法通常设计得非常高效,可以快速计算出哈希值。抗冲突性:不
- 代码随想录算法训练营第三十七天| 动态规划01
Rachela_z
算法动态规划
509.斐波那契数很简单的动规入门题,但简单题使用来掌握方法论的,还是要有动规五部曲来分析。代码随想录视频:手把手带你入门动态规划|LeetCode:509.斐波那契数_哔哩哔哩_bilibili动态规划五部曲:确定dp数组(dptable)以及下标的含义确定递推公式dp数组如何初始化确定遍历顺序举例推导dp数组classSolution:deffib(self,n:int)->int:F=[0,
- YOLOv8n-seg.pt的使用(实例分割,训练自己制作的数据集)
再坚持一下!!!
YOLO
Ubuntu+python3一、YOLOV8源码下载参考:GitHub-ultralytics/ultralytics:NEW-YOLOv8inPyTorch>ONNX>OpenVINO>CoreML>TFLite二、数据集制作1.labelme下载:pip3installlabelme2.终端输入labelme,打开labelme。界面“打开目录”,打开图片目录images,进行多边形标注(右键
- Leetcode32 最长有效括号深度解析
八股文领域大手子
数据库mysqljavasqlredis
问题描述找出字符串s中最长的有效括号子串的长度。核心思路动态规划:定义dp[i]为以字符s[i]结尾的最长有效括号子串长度。分情况讨论:根据当前字符是否为)以及前面的字符情况,推导状态转移方程。状态转移方程详解Case1:当前字符)与前一个字符(直接匹配场景:形如...()的结构。转移方程:if(s.charAt(i-1)=='('){dp[i]=dp[i-2]+2;//前i-2个字符的有效长度+
- 机器学习 [白板推导](三)[线性分类]
神齐的小马
机器学习分类人工智能
4.线性分类4.1.线性分类的典型模型硬分类:输出结果只有0或1这种离散结果;感知机线性判别分析Fisher软分类:会输出0-1之间的值作为各个类别的概率;概率生成模型:高斯判别分析GDA、朴素贝叶斯,主要建模的是p(x⃗,y)p(\vec{x},y)p(x,y)概率判别模型:逻辑回归,主要建模的是p(y∣x⃗)p(y|\vec{x})p(y∣x)4.2.感知机4.2.1.基本模型 模型:f(x
- ROS2——C++新特性
A_lvvx
ROS2c++开发语言ROS2
1.自动类型推导auto,可以自行将定义的变量赋值为整形、浮点型、字符型.....2.智能指针c++11提供了三种类型的智能指针:std::unique_ptr、std::shared_ptr和std::weak_ptr。在同一个程序中将某个资源使用智能共享指针进行管理,那么该数据无论在多少个函数内进行传递,都不会发生资源的复制,运行效率会大大提高。当所有的程序使用完毕后,还会自动收回,不会造成内
- 列表推导式_Python教程
曹操贪慕小乔
python基础pythonnumpy算法
内容摘要Python中存在一种特殊的表达式,名为推导式,它的作用是将一种数据结构作为输入,再经过过滤计算等处理,最后输出另一种数据结构。根据数据结构的不同会被分为列表推导式、文章正文Python中存在一种特殊的表达式,名为推导式,它的作用是将一种数据结构作为输入,再经过过滤计算等处理,最后输出另一种数据结构。根据数据结构的不同会被分为列表推导式、集合推导式和字典推导式。我们先着重来介绍最常使用的列
- 模型可解释性:基于博弈论的SHAP值计算与特征贡献度分析(附PyTorch/TensorFlow实现)
燃灯工作室
Aipytorchtensorflow人工智能
一、技术原理与数学推导(含典型案例)1.1Shapley值基础公式SHAP值基于合作博弈论中的Shapley值,计算公式为:ϕi=∑S⊆F∖{i}∣S∣!(∣F∣−∣S∣−1)!∣F∣![f(S∪{i})−f(S)]\phi_i=\sum_{S\subseteqF\setminus\{i\}}\frac{|S|!(|F|-|S|-1)!}{|F|!}[f(S\cup\{i\})-f(S)]ϕi=S
- 基于时间序列预测的推理服务弹性扩缩容实战指南:(行业案例+数学推导+源码解析)
燃灯工作室
Ai计算机视觉语音识别目标检测机器学习人工智能
技术原理(数学公式)整体架构请求量预测→扩缩容决策→资源配置动态调整三阶段闭环,周期为5-30分钟核心预测模型(时间序列预测)LSTM预测公式(CSDN兼容格式):$$h_t=\text{LSTM}(x_t,h_{t-1})\\\hat{y}_{t+1}=W_h\cdoth_t+b_h$$其中Wh∈Rd×1W_h\in\mathbb{R}^{d\times1}Wh∈Rd×1为权重矩阵,ddd为隐藏
- (二分 数学推导区间 两个数组的距离值)leetcode 1385
维齐洛波奇特利(male)
算法
数学推导:设arr1[i]=x则|x-arr2[j]|x+d而这个数t有三种可能1.刚好等于x-d不满足条件2.大于x-d但是小于等于x+d不满足条件3.大于x+d满足条件那arr2中小于t的值呢,因为t>=x-d所以arr2&arr1,vector&arr2,intd){sort(arr2.begin(),arr2.end());intans=0;for(autox:arr1){autot=ra
- OTSU算法(大津算法)
天行者@
算法opencv人工智能二值化
Otsu算法(大津算法)是一种经典的图像二值化方法,其核心是通过最大化类间方差自动确定全局阈值。以下是其具体工作原理和步骤:1.基本思想假设图像由前景(目标)和背景两部分组成,且两者的灰度分布存在明显差异(直方图呈现双峰)。Otsu算法通过寻找一个阈值,使得前景与背景之间的类间方差最大,从而将图像分割为二值图。2.数学推导(1)计算灰度直方图统计图像中每个灰度值的像素个数,得到直方图h[i](i为
- 图像拼接-UDIS详细推导和精读Unsupervised Deep Image Stitching: ReconstructingStitched Features to Images
cccc来财
算法计算机视觉深度学习
无监督粗对齐1.基于消融的策略主要是为了找到重叠区,去除无效区2.拼接域的TransformerLayer无监督图像重建1.低分辨率变形单应性变换仅能表示同一深度的空间变换,在实际的图像拼接任务中,由于输入图像的多样性和复杂性,经过第一阶段的粗对齐后,图像往往无法完全对齐。为了让网络能够感知到这些错位区域,特别是在高分辨率和大视差的情况下,设计了低分辨率变形分支,先在低分辨率下对图像进行处理和学习
- 强化学习-Chapter2-贝尔曼方程
Rsbs
算法机器学习概率论
强化学习-Chapter2-贝尔曼方程贝尔曼方程推导继续展开贝尔曼方程的矩阵形式状态值的求解动作价值函数与状态价值函数的关系贝尔曼方程推导Vπ(s)=E[Gt∣St=s]=E[rt+1+(γrt+2+…)∣St=s]=E[rt+1+γGt+1∣St=s]=∑a∈Aπ(s,a)∑s′∈SPs→s′a⋅(Rs→s′a+γE[Gt+1∣St+1=s′])=∑a∈Aπ(s,a)∑s′∈SPs→s′a⋅(R
- 【动态规划1】
m0_46150269
动态规划算法
力扣509.斐波那契数链接:link思路这是一道经典的动态规划DP题,做动态有5步:1.确定dp[i]含义,表示第i个数的斐波那契数值是dp[i]2.dp数组初始化3.确定递推公式4.确定遍历顺序,从递推公式可以知道dp[i]是依赖dp[i-1]和dp[i-2],那么遍历的顺序一定是从前到后遍历的5.举例推导,草稿完成classSolution{publicintfib(intn){if(n<=1
- 参数化曲线——参数三次样条曲线(实例)
Alpha狼霸
线性代数矩阵机器学习算法机器人数学建模数据分析
问题及相关理论给定空间中n+1个数据点pi(i=0,1,...,n)\bm{p}_i(i=0,1,...,n)pi(i=0,1,...,n),如何构造一条通过这些数据点并满足二阶连续的三次样条曲线?参数化曲线——参数三次样条曲线(1)介绍了数据点的参数化方法。参数化曲线——参数三次样条曲线(2)介绍了埃尔米特基形式的三次多项式曲线及其域变换。参数化曲线——参数三次样条曲线(3)推导了满足二阶连续的
- 推理大模型:技术解析与未来趋势全景
时光旅人01号
深度学习人工智能pythonpytorch神经网络
1.推理大模型的定义推理大模型(ReasoningLLMs)是专门针对复杂多步推理任务优化的大型语言模型,具备以下核心特性:输出形式创新展示完整逻辑链条(如公式推导、多阶段分析)任务类型聚焦擅长数学证明、编程挑战、多模态谜题等深度逻辑任务训练方法升级融合强化学习、思维链(CoT)、测试时计算扩展等技术2.主流推理大模型图谱2.1国际前沿模型OpenAIo1系列内部生成"思维链"机制数学/代码能力标
- 探地雷达F-K偏移算法详解与Python实现
T2ccc
探地雷达算法python
探地雷达F-K偏移算法详解与Python实现文章目录探地雷达F-K偏移算法详解与Python实现前言一、探地雷达成像原理与偏移的必要性二、F-K偏移的基本原理2.1波的传播与频率-波数域2.2F-K偏移的基本思路三、F-K偏移算法的数学推导3.1二维傅里叶变换3.2波场外推3.3Stolt映射(核心步骤)3.4逆变换四、F-K偏移的Python代码实现4.1辅助函数和数据准备4.2F-K偏移核心函
- 信号处理抽取多项滤波的数学推导与仿真
jz_ddk
信号处理python算法
昨天的《信号处理之插值、抽取与多项滤波》,已经介绍了插值抽取的多项滤率,今天详细介绍多项滤波的数学推导,并附上实战仿真代码。一、数学变换推导1.多相分解的核心思想将FIR滤波器的系数h(n)h(n)h(n)按相位分组,每组对应输入信号的不同抽样相位。通过分相、滤波、重组,实现与原FIR等效的处理。2.数学变换推导FIR滤波器的系统函数可表示为:H(z)=∑n=0N−1h(n)z−nH(z)=\su
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc