layer1→layer2
。train_step
会修改记录训练连迭代轮数的Variable
,moving_average
会滑动修改layer1
与layer2
的权重。tensor
传递的维度尺寸,如?x748
,?x500
,?x10
,以上均只有一个tensor
,?
表示batch的大小。tensor
的个数大于1时,可视化效果图上将只显示张量的个数,如4 tensors
,8 tensors
。标量维度的总大小
,而不是传输的标量个数
。tf.control_dependencies
函数指定了更新参数滑动平均值的操作和通过反向传播更新变量的操作需要同时进行,于是moving_average
与train_step
之间存在一条虚线。with tf.control_dependencies([train_step, variables_averages_op]):
train_op = tf.no_op(name='train')
# 训练模型。
with tf.Session() as sess:
tf.global_variables_initializer().run()
for i in range(TRAINING_STEPS):
print('Traing Steps: %d'%(i+1))
xs, ys = mnist.train.next_batch(BATCH_SIZE)
if i % 1000 == 0:
# 配置运行时需要记录的信息。
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
# 运行时记录运行信息的proto。
run_metadata = tf.RunMetadata()
_, loss_value, step = sess.run(
[train_op, loss, global_step], feed_dict={x: xs, y_: ys},
options=run_options, run_metadata=run_metadata)
writer.add_run_metadata(run_metadata=run_metadata, tag=("tag%d" % i), global_step=i)
print("After %d training step(s), loss on training batch is %g." % (step, loss_value))
else:
_, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys})
writer.close()
1.查看每个节点的时间开销:Session runs
选择迭代轮数较大的数据作为不同计算节点的时间/空间消耗标准,这样可以减少Tensorflow初始化对性能的影响。虽然选择Compute time
。
2.查看每个节点的空间开销:Session runs
选择迭代轮数较大的数据作为不同计算节点的时间/空间消耗标准,这样可以减少Tensorflow初始化对性能的影响。虽然选择Memory
。
3.查看每个节点的设备开销:Session runs
选择迭代轮数较大的数据作为不同计算节点的时间/空间消耗标准,这样可以减少Tensorflow初始化对性能的影响。虽然选择TPU Compatibility
。
Tensorboard
除了可视化上述的GRAPH
之外还可以可视化EVENTS
, IMAGES
,AUDIO
,HISTOGRAMS
# coding: utf-8
# In[1]:
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# #### 1. 生成变量监控信息并定义生成监控信息日志的操作。
# In[2]:
SUMMARY_DIR = "log2"
BATCH_SIZE = 100
TRAIN_STEPS = 3000
def variable_summaries(var, name):
with tf.name_scope('summaries'):
tf.summary.histogram(name, var)
mean = tf.reduce_mean(var)
tf.summary.scalar('mean/' + name, mean)
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('stddev/' + name, stddev)
# #### 2. 生成一层全链接的神经网络。
# In[3]:
def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):
with tf.name_scope(layer_name):
with tf.name_scope('weights'):
weights = tf.Variable(tf.truncated_normal([input_dim, output_dim], stddev=0.1))
variable_summaries(weights, layer_name + '/weights')
with tf.name_scope('biases'):
biases = tf.Variable(tf.constant(0.0, shape=[output_dim]))
variable_summaries(biases, layer_name + '/biases')
with tf.name_scope('Wx_plus_b'):
preactivate = tf.matmul(input_tensor, weights) + biases
tf.summary.histogram(layer_name + '/pre_activations', preactivate)
activations = act(preactivate, name='activation')
# 记录神经网络节点输出在经过激活函数之后的分布。
tf.summary.histogram(layer_name + '/activations', activations)
return activations
# In[4]:
def main():
mnist = input_data.read_data_sets("../../datasets/MNIST_data", one_hot=True)
with tf.name_scope('input'):
x = tf.placeholder(tf.float32, [None, 784], name='x-input')
y_ = tf.placeholder(tf.float32, [None, 10], name='y-input')
with tf.name_scope('input_reshape'):
image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])
tf.summary.image('input', image_shaped_input, 10)
hidden1 = nn_layer(x, 784, 500, 'layer1')
y = nn_layer(hidden1, 500, 10, 'layer2', act=tf.identity)
with tf.name_scope('cross_entropy'):
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y, labels=y_))
tf.summary.scalar('cross_entropy', cross_entropy)
with tf.name_scope('train'):
train_step = tf.train.AdamOptimizer(0.001).minimize(cross_entropy)
with tf.name_scope('accuracy'):
with tf.name_scope('correct_prediction'):
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
with tf.name_scope('accuracy'):
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar('accuracy', accuracy)
merged = tf.summary.merge_all()
with tf.Session() as sess:
summary_writer = tf.summary.FileWriter(SUMMARY_DIR, sess.graph)
tf.global_variables_initializer().run()
for i in range(TRAIN_STEPS):
xs, ys = mnist.train.next_batch(BATCH_SIZE)
# 运行训练步骤以及所有的日志生成操作,得到这次运行的日志。
summary, _ = sess.run([merged, train_step], feed_dict={x: xs, y_: ys})
# 将得到的所有日志写入日志文件,这样TensorBoard程序就可以拿到这次运行所对应的
# 运行信息。
summary_writer.add_summary(summary, i)
summary_writer.close()
# In[5]:
if __name__ == '__main__':
main()
Horizontal Axis
- STEP: 迭代步长
- RELATIVE: 相对时间(小时,相对于起始点)
- WALL:运行时间(小时)
Smoothing
SCALARS窗口:显示tf.summary.scalar()函数记录的数据。其中Smoothing参数的作用是控制对曲线的平滑处理,数值越小越接近真实值,但波动较大;数值越大越平缓。当
Smoothing=0
的时候,深色曲线与浅色曲线完全重合,即为真实SCALARS