- 验证resneXt,densenet,mobilenet和SENet的特色结构
dfj77477
人工智能python
简介图像分类对网络结构的要求,一个是精度,另一个是速度。这两个需求推动了网络结构的发展。resneXt:分组卷积,降低了网络参数个数。densenet:密集的跳连接。mobilenet:标准卷积分解成深度卷积和逐点卷积,即深度分离卷积。SENet:注意力机制。简单起见,使用了[1]的代码,注释掉layer4,作为基本框架resnet14。然后改变局部结构,验证分类效果。实验结果GPU:gtx107
- YOLOv8改进 | 主干篇 | YOLOv8引入MobileNetV4
小李学AI
YOLOv8有效涨点专栏YOLO深度学习计算机视觉目标检测人工智能机器学习神经网络
1.MobileNetV4介绍1.1摘要:我们推出了最新一代的MobileNet,称为MobileNetV4(MNv4),具有适用于移动设备的通用高效架构设计。在其核心,我们引入了通用倒瓶颈(UIB)搜索块,这是一种统一且灵活的结构,融合了倒瓶颈(IB)、ConvNext、前馈网络(FFN)和新颖的额外深度(ExtraDW)变体。除了UIB之外,我们还推出了MobileMQA,这是一个专为移动加速
- tvm交叉编译android opencl
极乐净土0822
androidtvmndk交叉编译opencl
模型编译:#encoding:utf-8importonnximportnumpyasnpimporttvmimporttvm.relayasrelayimportosfromtvm.contribimportndkonnx_model=onnx.load('mobilenet_v3_small.onnx')x=np.ones([1,3,224,224])input_name='input1'sh
- Keras中内置的预训练模型架构介绍
人生万事须自为,跬步江山即寥廓。
机器学习人工智能keras人工智能深度学习
Keras中内置的模型架构主要包括以下几种:1.MobileNet系列(MobileNetV1,MobileNetV2,MobileNetV3):-基本原理:MobileNet系列是为了移动和边缘设备设计的轻量级卷积神经网络。它们使用深度可分离卷积(depthwiseseparableconvolution)来减少参数和计算量。MobileNetV2引入了逆残差结构,MobileNetV3则通过神
- 报错解决方法 ImportError: cannot import name ‘ConvBNReLU‘ from ‘torchvision.models.mobilenetv2‘
两只程序猿
深度学习人工智能
今天在使用torch的mobilenet的时候遇到了报错:ImportError:cannotimportname'ConvBNReLU'from'torchvision.models.mobilenetv2'这个是torch版本问题,新版修改了API,只需要将fromtorchvision.models.mobilenetv2importConvBNReLU修改为fromtorchvision.
- 通俗易懂理解MobileNet网络模型
花花少年
深度学习MobileNet
温故而知新,可以为师矣!一、参考资料详细且通俗讲解轻量级神经网络——MobileNets【V1、V2、V3】MobileNetv1和MobileNetv2二、MobileNetv1原始论文:[1]MobileNet网络详解【深度学习】轻量化CNN网络MobileNet系列详解MobileNetV1图像分类1.MobileNetv1创新点MobileNetv1是专注于移动端或者嵌入式设备这种计算量不
- Caffe MobileSSD 使用过程记录
AICVer
深度学习ubuntu
github地址:https://github.com/chuanqi305/MobileNet-SSD1.下载SSD并编译运行SSDcaffe地址:https://github.com/weiliu89/caffe/tree/ssd要点一:下载的VOC数据要放在HOME/username/data/目录下而不是caffe-ssd的data目录下要点二:数据转换,执行命令直接sudo./data/
- 【RT-DETR有效改进】华为 | GhostnetV2移动端的特征提取网络效果完爆MobileNet系列
Snu77
RT-DETR有效改进专栏华为YOLO深度学习人工智能pytorch计算机视觉python
前言大家好,这里是RT-DETR有效涨点专栏。本专栏的内容为根据ultralytics版本的RT-DETR进行改进,内容持续更新,每周更新文章数量3-10篇。专栏以ResNet18、ResNet50为基础修改版本,同时修改内容也支持ResNet32、ResNet101和PPHGNet版本,其中ResNet为RT-DETR官方版本1:1移植过来的,参数量基本保持一致(误差很小很小),不同于ultra
- 轻量化CNN网络 - MobileNet
mango1698
AIcnn网络深度学习
文章目录1.MobileNetV12.MobileNetV23.MobileNetV3传统卷积神经网络,内存需求大、运算量大,导致无法在移动设备以及嵌入式设备上运行。MobileNet网络是由google团队在2017年提出的,专注于移动端或者嵌入式设备中的轻量级CNN网络。相比传统卷积神经网络,在准确率小幅降低的前提下大大减少模型参数与运算量。(相比VGG16准确率减少了0.9%,但模型参数只有
- 模型优化论文笔记6----MobileNets采用深度可分离卷积在权衡精度的同时减小模型尺寸和时延
JaJaJaJaaaa
模型优化卷积神经网络深度学习
《MobileNets:EfficientConvolutionalNeuralNetworksforMobileVisionApplications》论文地址:https://arxiv.org/abs/1704.04861MXNet框架代码:https://github.com/miraclewkf/mobilenet-MXNet1.主要思想介绍了两种简单的全局超参数用以平衡时延和准确率,构建
- YOLOv8改进 | 主干篇 | EfficientViT高效的特征提取网络完爆MobileNet系列(轻量化网络结构)
Snu77
YOLOv8有效涨点专栏YOLO人工智能目标检测深度学习计算机视觉pythonpytorch
一、本文介绍本文给大家带来的改进机制是主干网络,一个名字EfficientViT的特征提取网络(和之前发布的只是同名但不是同一个),其基本原理是提升视觉变换器在高效处理高分辨率视觉任务的能力。它采用了创新的建筑模块设计,包括三明治布局和级联群组注意力模块。其是一种高效率的特征提取网络训练速度非常快,推理速度也要比基础版本的要快,其效果完爆之前的MobileNetV3等轻量化网络模型。欢迎大家订阅本
- 基于MobileNet的人体姿态站立行走跌倒检测系统
xuehaikj
opencvpython
1.研究背景与意义项目参考AAAIAssociationfortheAdvancementofArtificialIntelligence研究背景与意义随着移动互联网和智能设备的普及,人们对于智能化技术的需求越来越高。人体姿态检测作为计算机视觉领域的一个重要研究方向,可以广泛应用于人机交互、健康监测、安全监控等领域。特别是在老年人和残障人士的照护中,人体姿态检测可以起到重要的辅助作用。在老年人和残
- 神经网络压缩(Neural Network Compression)
香槟酒气满天飞
学习笔记神经网络剪枝
0.前言神经网络的压缩,既能够保证模型的精度不会显著性地受到损失,又能够大大减少模型的参数,除了直接设计更精细的模型外,目前主要分为近似、量化和剪枝三类方法。主要参考:知乎:神经网络压缩综述1.更精细的模型MobileNets借鉴factorizedconvolution的思想,将普通卷积操作分成两部分ShuffleNet基于MobileNet的group思想,将卷积操作限制到特定的输入通道。2.
- 深度学习代码源码项目90个分享
z5645654
深度学习python深度学习人工智能机器学习python
demo仓库和视频演示:银色子弹zg的个人空间-银色子弹zg个人主页-哔哩哔哩视频卷积网路CNN分类的模型一般使用包括alexnet、DenseNet、DLA、GoogleNet、Mobilenet、ResNet、ResNeXt、ShuffleNet、VGG、EfficientNet和Swintransformer等10多种模型目标检测一般是yolov3、yolov4、yolov5、yolox、P
- 003水果识别小程序-python-pytorch-mobilenet
bug_creat0r
深度学习pythonpandasmatplotlib
完整的代码流程演示效果在b站上可以观看找003期:到此一游7758258的个人空间_哔哩哔哩_bilibili效果演示图图下:通过读取摄像头中识别到的水果再结合深度学习模型进行识别完整的代码展示如下:算法部分是深度学习网络训练部分用的python-pytorch包括水果数据集文件夹,下面放置了不同种类的水果文件夹通过运行01训练数据集文本生成.py会将水果数据集文件夹下的图片路径保存到test.t
- 基于 CNN 的智能垃圾分类系统
沐知全栈开发
cnn分类人工智能
介绍这个智能垃圾分类系统是基于Python、PyQT5、TensorFlow等技术栈构建而成的。系统主要通过TensorFlow训练两组模型来执行垃圾分类任务,其中包括一个CNN模型和一个MobileNet模型。数据集经过事先的清洗,包含了4个大类和245个小类的垃圾图片,以便更精确地进行分类。在训练过程中,两个模型分别使用train_cnn.py和train_mobilenet.py进行训练。训
- YOLOv8优化策略:轻量化改进 | 华为Ghostnet,超越谷歌MobileNet | CVPR2020
会AI的学姐
YOLOv8创新改进YOLO目标跟踪人工智能
本文改进:Ghostbottleneck为堆叠Ghost模块,与YOLOV8建立轻量C2f_GhostBottleneckYOLOv8改进专栏:http://t.csdnimg.cn/hGhVK学姐带你学习YOLOv8,从入门到创新,轻轻松松搞定科研;1.Ghostnet介绍论文:https://arxiv.org/pdf/1911.11907.pdf摘要:由于内存和计算资源的限制,在嵌入式设备商
- YOLOv8-Seg改进:轻量化改进 | 华为Ghostnet,超越谷歌MobileNet | CVPR2020
会AI的学姐
YOLOv8-seg创新YOLO深度学习人工智能前端华为算法
本文改进:Ghostbottleneck为堆叠Ghost模块,与YOLOV8建立轻量C2f_GhostBottleneckYOLOv8-seg创新专栏:http://t.csdnimg.cn/KLSdv学姐带你学习YOLOv8,从入门到创新,轻轻松松搞定科研;1)手把手教你如何训练YOLOv8-seg;2)模型创新,提升分割性能;3)独家自研模块助力分割;1.Ghostnet介绍论文:https:
- 霹雳吧啦Wz《pytorch图像分类》-p6MobileNet网络
失舵之舟-
#pytorch分类网络
《pytorch图像分类》p6MobileNet网络结构详解1MobileNetv1网络1.1Depthwiseconvolution(DW卷积)1.1.1Depthwiseseparableconvolution(深度可分的卷积操作)1.2增加超参数α和β2MobileNetv2网络2.1InvertedResiduals(倒残差结构)2.2LinearBottlenecks2.3MobileN
- mobileNet
寒寒_21b7
MobileNetV11、为什么要设计mobilenet?为移动端和嵌入式端深度学习应用设计的网络,使得在cpu上也能达到理想的速度要求。2、mobilenet的结构image.png3、mobilenet网络的特点。轻量化放弃pooling直接采用stride=2进行卷积运算4、创新点1:depthwiseseparableconvolutionsimage.png标准卷积:图(a):特点是卷积
- 【我的方向】轻量化小目标检测
我菜就爱学
计算机视觉目标检测人工智能计算机视觉
文章目录轻量化1人工设计的轻量化方法1.1组卷积1.2深度可分离卷积1.3基于深度可分离卷积的MobileNet1.4ShuffleNet1.5ShuffleNetV2基于Octave卷积的改进基线网络基于Ghost特征的GhostNet基于神经网络结构搜索的轻量化方法基于自动模型压缩的轻量化方法4相关论文小目标检测相关论文轻量化与小目标结合的看法轻量化为什么要研究轻量级神经网络?随着深度神经网络
- 实现pytorch版的mobileNetV1
Mr.Q
PyTorchpaperpytorch人工智能python
mobileNet具体细节,在前面已做了分析记录:轻量化网络-MobileNet系列-CSDN博客这里是根据网络结构,搭建模型,用于图像分类任务。1.网络结构和基本组件2.搭建组件(1)普通的卷积组件:CBL=Conv2d+BN+ReLU6;(2)深度可分离卷积:DwCBL=Convdw+Convdp;Convdw+Convdp={Conv2d(3x3)+BN+ReLU6}+{Conv2d(1x1
- 【Tensorflow】SSD_Mobilenet_v2实现目标检测(一):环境配置+训练
摇曳的树
Tensorflowubuntu深度学习tensorflowpython
Tensorflow(官方介绍使用)要求Tensorflow官方模型库升级到最新的Tensorflow2pipinstalltf-nightly安装方法一:安装Tensorflow模型pip包pip自动安装所有的模型和依赖项pipinstalltf-models-official若要安装最新的更改则:pipinstalltf-models-nightly方法二:克隆源码文件1.克隆GitHub存储
- Python实现的面部健康特征识别系统
爱欲无极
深度学习神经网络python人工智能开发语言
Python实现的面部健康特征识别系统引言1.数据集获取与准备2.模型训练3.Flask框架的应用4.前台识别测试界面结论与展望引言本文将介绍一个基于Python的面部健康特征判别系统,该系统利用互联网获取的公开数据集,分为健康、亚健康和不健康三个类别。系统主要使用Python编程语言、Flask框架以及MobileNet模型。功能包括模型训练和前台识别测试界面,界面中包含图像上传和识别结果返回的
- 神经网络常用模型总结
是Dream呀
神经网络神经网络人工智能深度学习
本文目录:【一】目标检测中IOU的相关概念与计算【二】目标检测中NMS的相关概念与计算【三】One-stage目标检测与Two-stage目标检测的区别?【四】哪些方法可以提升小目标检测的效果?【五】ResNet模型的特点以及解决的问题?【六】ResNeXt模型的结构和特点?【七】MobileNet系列模型的结构和特点?【八】MobileNet系列模型的结构和特点?(二)【九】ViT(Vision
- 紫光展锐T820与百度飞桨完成I级兼容性测试 助推端侧AI融合创新
紫光展锐官方
人工智能百度paddlepaddle
近日,紫光展锐高性能5GSoCT820与百度飞桨完成I级兼容性测试(基于PaddleLite工具)。测试结果显示,双方兼容性表现良好,整体运行稳定。这是紫光展锐加入百度“硬件生态共创计划”后的阶段性成果。本次I级兼容性测试完成了计算机视觉技术领域3个模型的验证,经过双方联合严格测试,紫光展锐T820在MobileNet-V1、ResNet50、SSD-MobileNet-V1模型上的精度、速度等各
- resnet和mobilenet各个模型下载地址
东三儿
resnetresnet_v1_50_2016_08_28.tar.gzresnet_v1_101_2016_08_28.tar.gzresnet_v1_152_2016_08_28.tar.gzmobilenetmobilenet_v2_1.0_224.tgzmobilenet_v2_0.75_224.tgzmobilenet_v2_0.5_224.tgzmobilenet_v2_0.35_22
- ncnn源码阅读笔记(一)
半笔闪
工作需要,最近在使用ncnn,为了写自定义层,深入理解下源码,在此作个笔记。https://github.com/Tencent/ncnn目录结构image.pngbenchmark:一些常见模型的模型文件,如mobilenet,resnet,vgg等。cmake:有关链接openmp和valkan的cmake文件,这两个都是并行计算加速用的docs:文档,包括开发指南,构建指南等等example
- MobileNet相关知识整理
hjxu2016
文献阅读
一、MobileNetV1&MobileNetV2简介(超级推荐)二、Depthwise卷积与Pointwise卷积(Depthwise卷积的提出,大大较少了参数量,论文的主要贡献)三、参数量计算四、论文笔记五、论文地址六、相关代码caffe实现:https://github.com/shicai/MobileNet-Caffe民间实现:caffe|Tensorflow官方代码:github上还是
- 紫光展锐T820与飞桨完成I级兼容性测试 助推端侧AI融合创新
飞桨PaddlePaddle
硬件生态人工智能程序员硬件生态机器学习
近日,紫光展锐高性能5GSoCT820与百度飞桨完成I级兼容性测试(基于PaddleLite工具)。测试结果显示,双方兼容性表现良好,整体运行稳定。这是紫光展锐加入百度“硬件生态共创计划”后的阶段性成果。本次I级兼容性测试完成了计算机视觉技术领域3个模型的验证,经过双方联合严格测试,紫光展锐T820在MobileNet-V1、ResNet50、SSD-MobileNet-V1模型上的精度、速度等各
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep