- 《深度学习500问》外链笔记
Vincent不是文森特
笔记
1.这个是什么意思2.核函数3.公式理解4.L1和L2正则L1和L2正则化是机器学习中常用的两种正则化技术,它们通过在损失函数中添加一个惩罚项来防止模型过拟合。这两种技术的主要区别在于惩罚项的形式。L1正则化(Lasso正则化)L1正则化通过向损失函数添加权重的绝对值的总和来工作L1正则化的效果之一是它倾向于产生稀疏的权重矩阵,即模型中很多权重会变为0,这有助于特征选择,因为模型会忽略不那么重要的
- 《深度学习 500 问》已更新,GitHub 标星 2.6W
布客飞龙
来源:Datawhale几个月前,红色石头发文介绍过一份在GitHub上非常火爆的项目,名为:DeepLearning-500-questions,中文译名:深度学习500问。作者是川大的一名优秀毕业生谈继勇。该项目以深度学习面试问答形式,收集了500个问题和答案。内容涉及了常用的概率知识、线性代数、机器学习、深度学习、计算机视觉等热点问题。该热门项目一直在不断更新,作者本着开源精神,不断有新的贡
- 知识储备--基础算法篇-二分搜索
Orange_sparkle
python算法
1.前言最近准备开始刷算法题了,搜了很多相关的帖子,下面三个很不错,计算机视觉秋招准备过程看这个:计算机视觉算法工程师-秋招面经-知乎(zhihu.com)https://zhuanlan.zhihu.com/p/399813916复习深度学习相关知识看深度学习500问:深度学习500问(github.com)https://github.com/scutan90/DeepLearning-500
- 机器学习资料汇总
达微
机器学习资料汇总1.《深度学习500问》川大优秀毕业生在GitHub上创建的项目《深度学习500问》地址:https://github.com/scutan90/DeepLearning-500-questions2.《TensorFlow-Course》针对新手的TensorFlow教程地址:https://github.com/open-source-for-science/TensorFlo
- 机器学习资料汇总
达微
机器学习资料汇总https://github.com/loveunk/machine-learning-deep-learning-noteshttps://github.com/loveunk/Deep-learning-books1.《深度学习500问》川大优秀毕业生在GitHub上创建的项目《深度学习500问》地址:https://github.com/scutan90/DeepLearni
- 强化学习(一):强化学习浅谈
慕阮
深度学习强化学习
最近接触强化学习,发现非常有意思,强化学习多是一种动态规划的思路,使用生活化语言描述,就叫做:实践出真知。相较于有监督和无监督的学习,强化学习更多地是在决策产生结果的反馈基础上进行不断的优化。(在决策结果反馈前,有监督和无监督学习已经固定了决策方案)。强化学习的使用场景(摘自:深度学习500问-强化学习):(1)Manufacturing例如一家日本公司Fanuc,工厂机器人在拿起一个物体时,会捕
- 深度学习(十四):数据增强Data Augmentation
打不死的小黑
深度学习计算机视觉深度学习计算机视觉数据增强图像处理
这是一系列深度学习的介绍,本文不会涉及公式推导,主要是一些算法思想的随笔记录。适用人群:深度学习初学者,转AI的开发人员。编程语言:Python参考资料:吴恩达老师的深度学习系列视频吴恩达老师深度学习笔记整理深度学习500问唐宇迪深度学习入门视频课程笔记下载:深度学习个人笔记完整版为什么要使用数据增强数据增强,也称数据扩充,没有大量数据情况下,如何获取更多数据。数据增强是指通过对现有样本的变换来获
- 干货丨深度迁移学习方法的基本思路(文末送书)
风度78
神经网络大数据计算机视觉机器学习人工智能
百度前首席科学家、斯坦福大学副教授吴恩达(AndrewNg)曾经说过:迁移学习将是继监督学习之后的下一个促使机器学习成功商业化的驱动力。本文选自《深度学习500问:AI工程师面试宝典》,将重点介绍目前最热门的深度迁移学习方法的基本思路。▼限时5折,扫码了解详情▼▼随着迁移学习方法的大行其道,越来越多的研究人员开始使用深度神经网络进行迁移学习。与传统的非深度迁移学习方法相比,深度迁移学习直接提升了在
- 周志华《机器学习》书每章思维导图总结
Liao-Zhuolin
笔记机器学习
周志华《机器学习》第一章绪论第二章模型评估与选择第三章线性模型第四章决策树第五章神经网络第六章支持向量机第七章贝叶斯分类器第八章集成学习第九章聚类第十章降维与度量学习第十一章特征选择与稀疏表示第十二章计算学习理论第十三章半监督学习第十四章概率图模型第十五章规则学习第十六章强化学习深度学习500问第一章:数学基础第二章:机器学习基础
- 深度学习(十二):经典CNN
打不死的小黑
深度学习计算机视觉深度学习计算机视觉CNN卷积神经网络经典CNN
这是一系列深度学习的介绍,本文不会涉及公式推导,主要是一些算法思想的随笔记录。适用人群:深度学习初学者,转AI的开发人员。编程语言:Python参考资料:吴恩达老师的深度学习系列视频吴恩达老师深度学习笔记整理深度学习500问笔记下载:深度学习个人笔记完整版CNN网络发展CNN受生物自然视觉认知机制启发而来。1959年,Hubel&Wiesel发现,动物视觉皮层细胞负责检测光学信号。受此启发,198
- 深度学习500问
jk英菲尼迪
斯坦福_CS231
项目地址:https://github.com/scutan90/DeepLearning-500-questions第一章数学基础11.1标量、向量、张量之间的联系11.2张量与矩阵的区别?11.3矩阵和向量相乘结果11.4向量和矩阵的范数归纳11.5如何判断一个矩阵为正定?21.6导数偏导计算31.7导数和偏导数有什么区别?31.8特征值分解与特征向量31.9奇异值与特征值有什么关系?41.1
- 【AI书籍】深度学习500问——AI工程师面试宝典,
机器视觉CV
人工智能算法编程语言深度学习机器学习
欢迎大家来到我们《AI书籍》专栏,这一个专栏是面向所有对人工智能技术感兴趣的朋友。在这个专栏里,我们会给大家推荐人工智能相关的优质书籍。今天要推荐的书籍是《深度学习500问——AI工程师面试宝典》作者&编辑|Leong深度学习500问——AI工程师面试宝典这是一本什么样的书本书系统地描述了深度学习的基本理论算法及应用,凝聚了众多一线科研人员及工程师的经验,旨在培养读者发现问题、解决问题、扩展问题的
- 每日一问之为什么创建这个系列
caoqi95
每日一问系列是参照GitHub上daily-question以及深度学习500问这两个Repo或者其他地方的各种问题来测验自己的掌握水平的,顺带着整理一些相关知识点。在此,感谢Repo作者的辛苦整理。不妥则删。同时,建立这个系列也是为了记录自己的缺陷以及每日的进步。且不想再继续懒下去了,要改邪归正,争取做一个理论,代码都很厉害(即使不厉害,起码也要够的上合格)的人。再者,建立这个系列也是今天突然想
- 干货丨深度迁移学习方法的基本思路
博文视点
人工智能深度学习
百度前首席科学家、斯坦福大学副教授吴恩达(AndrewNg)曾经说过:迁移学习将是继监督学习之后的下一个促使机器学习成功商业化的驱动力。本文选自《深度学习500问:AI工程师面试宝典》,将重点介绍目前最热门的深度迁移学习方法的基本思路。限时5折▼随着迁移学习方法的大行其道,越来越多的研究人员开始使用深度神经网络进行迁移学习。与传统的非深度迁移学习方法相比,深度迁移学习直接提升了在不同任务上的学习效
- 5_参考的书、网站、代码、文档与数据集
kk_land
文章目录书文章资源代码数据集书《Python编程从入门到实践》《Python深度学习》《深度学习500问》不让转载,自己上github找哈《模式识别(张学工版)》《高超声速飞行器技术(蔡国飙)》《吴恩达机器学习笔记》文章如何使用学习曲线来诊断你的LSTM模型的行为基于LSTM的轴承故障诊断这篇文章中,LSTM准确率始终无法稳定,结合0221内容找一找确切原因。数据处理的方式是一个样本400个采样点
- 深度学习(十五):目标定位 Object Localization
打不死的小黑
深度学习计算机视觉深度学习计算机视觉
这是一系列深度学习的介绍,本文不会涉及公式推导,主要是一些算法思想的随笔记录。适用人群:深度学习初学者,转AI的开发人员。编程语言:Python参考资料:吴恩达老师的深度学习系列视频吴恩达老师深度学习笔记整理深度学习500问笔记下载:深度学习个人笔记完整版图像分类图片分类问题已经并不陌生了,例如,输入一张图片到多层卷积神经网络,它会输出一个特征向量,并反馈给softmax单元来预测图片类型。目标定
- 深度学习500问阅读笔记——Batch_Size
Tiám青年
深度学习500问
这是深度学习500问系列笔记之一,帮助我深入记忆知识,如有不足,随时欢迎交流和探讨。10.Batch_Size1.为什么需要Batch_Size?Batch的选择,首先决定的是下降的方向。如果数据集比较小,可采用全数据集的形式,好处是:(1)由全数据集确定的方向能够更好地代表样本的总体,从而更准确地朝向极值所在的方向。(2)由于不同权重的梯度值差别巨大,因此选取一个全局的学习率很困难。FullBa
- 深度学习500问阅读笔记——理解One Hot Encodeing原理及作用?
Tiám青年
深度学习500问
这是深度学习500问系列笔记之一,帮助我深入记忆知识,如有不足,随时欢迎交流和探讨。11.理解OneHotEncodeing原理及作用?问题由来在很多机器学习任务中,特征并不总是连续值,而有可能是分类值。例如,考虑以下的三个特征:["male","female"]["fromEurope","fromUS","fromAsia"]["useFirefox","usesChrome","usesSa
- 深度学习(十八):人脸验证(face verification)和人脸识别(face recognition)
打不死的小黑
深度学习计算机视觉
这是一系列深度学习的介绍,本文不会涉及公式推导,主要是一些算法思想的随笔记录。适用人群:深度学习初学者,转AI的开发人员。编程语言:Python参考资料:吴恩达老师的深度学习系列视频吴恩达老师深度学习笔记整理深度学习500问笔记下载:深度学习个人笔记完整版人脸验证(faceverification)和人脸识别(facerecognition)人脸验证问题:如果你有一张输入图片,以及某人的ID或者是
- 深度学习概率知识、线性代数、机器学习、深度学习、计算机视觉等热点问题
南通SEO
文档手册
深度学习500问,以问答形式对常用的概率知识、线性代数、机器学习、深度学习、计算机视觉等热点问题进行阐述,以帮助自己及有需要的读者。全书分为15个章节,近20万字第一章数学基础11.1标量、向量、张量之间的联系11.2张量与矩阵的区别?11.3矩阵和向量相乘结果11.4向量和矩阵的范数归纳11.5如何判断一个矩阵为正定?21.6导数偏导计算31.7导数和偏导数有什么区别?31.8特征值分解与特征向
- 每日一问之为什么创建这个系列
caoqi95
每日一问
每日一问系列是参照GitHub上daily-question以及深度学习500问这两个Repo或者其他地方的各种问题来测验自己的掌握水平的,顺带着整理一些相关知识点。在此,感谢Repo作者的辛苦整理。不妥则删。同时,建立这个系列也是为了记录自己的缺陷以及每日的进步。且不想再继续懒下去了,要改邪归正,争取做一个理论,代码都很厉害(即使不厉害,起码也要够的上合格)的人。再者,建立这个系列也是今天突然想
- 重磅!《深度学习 500 问》已更新,GitHub 标星 2.6W(附完整下载)
红色石头Will
点击上方“AI有道”,选择“星标”公众号重磅干货,第一时间送达几个月前,红色石头发文介绍过一份在GitHub上非常火爆的项目,名为:DeepLearning-500-questions,中文译名:深度学习500问。作者是川大的一名优秀毕业生谈继勇。该项目以深度学习面试问答形式,收集了500个问题和答案。内容涉及了常用的概率知识、线性代数、机器学习、深度学习、计算机视觉等热点问题。该热门项目一直在不
- (2)机器学习基础(深度学习500问)
knitzj
deeplearningtheory
=======================================================================(1)监督学习:有数据和标签,学习一个模型预测一个输出(决策函数)应用:分类问题,回归问题常见算法:逻辑回归,反向传递神经网络(2)非监督学习:有数据无标签应用:推断数据内部结构,关联规则,聚类常见算法:Apriori算法,k-Means算法(3)半监督学习
- [资源分享] Github上八千Star的深度学习500问教程
spearhead_cai
本文大约600字,阅读大约需要2分钟这周要分享的一个资源是来自Github上的已经有八千多Star的一个深度学习知识总结,如下图所示:其Github地址为:https://github.com/scutan90/DeepLearning-500-questions它目前是有16个章节,包含了数学基础、机器学习、深度学习、CNN、RNN、计算机视觉等,以及最新添加的NLP,即自然语言处理方面的知识总
- 川大优秀毕业生在GitHub上建了一个项目《深度学习500问》,还未完结就获赞无数
zl1zl2zl3
深度学习人工智能AI深度学习人工智能AI
近年来,深度学习在语音、图像、自然语言处理等领域都取得了非常不错的成果,自然而然地成为技术人员争相学习的热点。为了帮助正在学习深度学习的伙伴们,川大的一名优秀毕业生,在GitHub上创建了一个项目:《深度学习500问》,通过问答的形式对常用的概率知识、线性代数、机器学习、深度学习、计算机视觉等热点问题进行阐述,以帮助自己及有需要的读者。全书分为15个章节,近20万字。截至今日,该项目已经获得了21
- 深度学习500问记录-机器学习1
ys1305
500问系列
500问地址常用术语Truepositives(TP):被正确地划分为正例的个数,即实际为正例且被分类器划分为正例的实例数;Falsepositives(FP):被错误地划分为正例的个数,即实际为负例但被分类器划分为正例的实例数;Falsenegatives(FN):被错误地划分为负例的个数,即实际为正例但被分类器划分为负例的实例数;Truenegatives(TN):被正确地划分为负例的个数,即
- 深度学习500问
郭明君
技术博客
深度学习500问Referenceshttps://github.com/scutan90/DeepLearning-500-questions01.数学基础02.机器学习基础ROC曲线SVM(supportvectormachine)参考1:https://blog.csdn.net/Love_wanling/article/details/69390047参考2:https://blog.cs
- 深度学习领域的神文(带注释版)
weixin_42774642
机器学习
综合重磅!深度学习500问更新,GitHub2.6W星(附完整下载)-红色石头的文章-知乎https://zhuanlan.zhihu.com/p/71979604神经网络与深度学习(github,国人总结整理的)https://nndl.github.io/这是作者多年以来学习总结的笔记,经整理之后开源于世。写得相当好:http://www.huaxiaozhuan.com/FasterR-CN
- 《深度学习500问》之【数学基础篇】——学习笔记(一)
陆月二三
深度学习深度学习500问
本文参考由哈工大博士生-袁笛、同济大学-乔成磊先生所著的《深度学习500问》而写的学习笔记。学海无涯,笔者不才,望多包涵!一、标量、向量、矩阵、张量标量(scalar)一个标量表示一个单独的数,它不同于线性代数中研究的其他大部分对象(通常是多个数的数组),只有大小,没有方向。我们用斜体表示标量。标量通常被赋予小写的变量名称。向量(vector)一个向量表示一组有序排列的数。通过次序中的索引,我们可
- 川大优秀毕业生在GitHub上建了一个项目《深度学习500问》,还未完结就获赞无数...
爱编程_
来自:开源最前线(ID:OpenSourceTop)综合自:GitHub项目页近年来,深度学习在语音、图像、自然语言处理等领域都取得了非常不错的成果,自然而然地成为技术人员争相学习的热点。为了帮助正在学习深度学习的伙伴们,川大的一名优秀毕业生,在GitHub上创建了一个项目:《深度学习500问》,通过问答的形式对常用的概率知识、线性代数、机器学习、深度学习、计算机视觉等热点问题进行阐述,以帮助自己
- knob UI插件使用
换个号韩国红果果
JavaScriptjsonpknob
图形是用canvas绘制的
js代码
var paras = {
max:800,
min:100,
skin:'tron',//button type
thickness:.3,//button width
width:'200',//define canvas width.,canvas height
displayInput:'tr
- Android+Jquery Mobile学习系列(5)-SQLite数据库
白糖_
JQuery Mobile
目录导航
SQLite是轻量级的、嵌入式的、关系型数据库,目前已经在iPhone、Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠。
因为Android已经集成了SQLite,所以开发人员无需引入任何JAR包,而且Android也针对SQLite封装了专属的API,调用起来非常快捷方便。
我也是第一次接触S
- impala-2.1.2-CDH5.3.2
dayutianfei
impala
最近在整理impala编译的东西,简单记录几个要点:
根据官网的信息(https://github.com/cloudera/Impala/wiki/How-to-build-Impala):
1. 首次编译impala,推荐使用命令:
${IMPALA_HOME}/buildall.sh -skiptests -build_shared_libs -format
2.仅编译BE
${I
- 求二进制数中1的个数
周凡杨
java算法二进制
解法一:
对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。
public int bitCount(int x){
int count = 0;
while(x!=0){
if(x%2!=0){ /
- spring中hibernate及事务配置
g21121
Hibernate
hibernate的sessionFactory配置:
<!-- hibernate sessionFactory配置 -->
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<
- log4j.properties 使用
510888780
log4j
log4j.properties 使用
一.参数意义说明
输出级别的种类
ERROR、WARN、INFO、DEBUG
ERROR 为严重错误 主要是程序的错误
WARN 为一般警告,比如session丢失
INFO 为一般要显示的信息,比如登录登出
DEBUG 为程序的调试信息
配置日志信息输出目的地
log4j.appender.appenderName = fully.qua
- Spring mvc-jfreeChart柱图(2)
布衣凌宇
jfreechart
上一篇中生成的图是静态的,这篇将按条件进行搜索,并统计成图表,左面为统计图,右面显示搜索出的结果。
第一步:导包
第二步;配置web.xml(上一篇有代码)
建BarRenderer类用于柱子颜色
import java.awt.Color;
import java.awt.Paint;
import org.jfree.chart.renderer.category.BarR
- 我的spring学习笔记14-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。
PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java
- maven 之 cobertura 简单使用
antlove
maventestunitcoberturareport
1. 创建一个maven项目
2. 创建com.CoberturaStart.java
package com;
public class CoberturaStart {
public void helloEveryone(){
System.out.println("=================================================
- 程序的执行顺序
百合不是茶
JAVA执行顺序
刚在看java核心技术时发现对java的执行顺序不是很明白了,百度一下也没有找到适合自己的资料,所以就简单的回顾一下吧
代码如下;
经典的程序执行面试题
//关于程序执行的顺序
//例如:
//定义一个基类
public class A(){
public A(
- 设置session失效的几种方法
bijian1013
web.xmlsession失效监听器
在系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session。具体设置很简单,方法有三种:(1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(900);参数900单位是秒,即在没有活动15分钟后,session将失效。这里要注意这个session设置的时间是根据服务器来计算的,而不是客户端。所
- java jvm常用命令工具
bijian1013
javajvm
一.概述
程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志、堆dump文件、线程dump文件、GC日志等。通过虚拟机监控和诊断工具可以帮忙我们快速获取、分析需要的数据,进而提高问题解决速度。 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具:
&nbs
- 【Spring框架一】Spring常用注解之Autowired和Resource注解
bit1129
Spring常用注解
Spring自从2.0引入注解的方式取代XML配置的方式来做IOC之后,对Spring一些常用注解的含义行为一直处于比较模糊的状态,写几篇总结下Spring常用的注解。本篇包含的注解有如下几个:
Autowired
Resource
Component
Service
Controller
Transactional
根据它们的功能、目的,可以分为三组,Autow
- mysql 操作遇到safe update mode问题
bitray
update
我并不知道出现这个问题的实际原理,只是通过其他朋友的博客,文章得知的一个解决方案,目前先记录一个解决方法,未来要是真了解以后,还会继续补全.
在mysql5中有一个safe update mode,这个模式让sql操作更加安全,据说要求有where条件,防止全表更新操作.如果必须要进行全表操作,我们可以执行
SET
- nginx_perl试用
ronin47
nginx_perl试用
因为空闲时间比较多,所以在CPAN上乱翻,看到了nginx_perl这个项目(原名Nginx::Engine),现在托管在github.com上。地址见:https://github.com/zzzcpan/nginx-perl
这个模块的目的,是在nginx内置官方perl模块的基础上,实现一系列异步非阻塞的api。用connector/writer/reader完成类似proxy的功能(这里
- java-63-在字符串中删除特定的字符
bylijinnan
java
public class DeleteSpecificChars {
/**
* Q 63 在字符串中删除特定的字符
* 输入两个字符串,从第一字符串中删除第二个字符串中所有的字符。
* 例如,输入”They are students.”和”aeiou”,则删除之后的第一个字符串变成”Thy r stdnts.”
*/
public static voi
- EffectiveJava--创建和销毁对象
ccii
创建和销毁对象
本章内容:
1. 考虑用静态工厂方法代替构造器
2. 遇到多个构造器参数时要考虑用构建器(Builder模式)
3. 用私有构造器或者枚举类型强化Singleton属性
4. 通过私有构造器强化不可实例化的能力
5. 避免创建不必要的对象
6. 消除过期的对象引用
7. 避免使用终结方法
1. 考虑用静态工厂方法代替构造器
类可以通过
- [宇宙时代]四边形理论与光速飞行
comsci
从四边形理论来推论 为什么光子飞船必须获得星光信号才能够进行光速飞行?
一组星体组成星座 向空间辐射一组由复杂星光信号组成的辐射频带,按照四边形-频率假说 一组频率就代表一个时空的入口
那么这种由星光信号组成的辐射频带就代表由这些星体所控制的时空通道,该时空通道在三维空间的投影是一
- ubuntu server下python脚本迁移数据
cywhoyi
pythonKettlepymysqlcx_Oracleubuntu server
因为是在Ubuntu下,所以安装python、pip、pymysql等都极其方便,sudo apt-get install pymysql,
但是在安装cx_Oracle(连接oracle的模块)出现许多问题,查阅相关资料,发现这边文章能够帮我解决,希望大家少走点弯路。http://www.tbdazhe.com/archives/602
1.安装python
2.安装pip、pymysql
- Ajax正确但是请求不到值解决方案
dashuaifu
Ajaxasync
Ajax正确但是请求不到值解决方案
解决方案:1 . async: false , 2. 设置延时执行js里的ajax或者延时后台java方法!!!!!!!
例如:
$.ajax({ &
- windows安装配置php+memcached
dcj3sjt126com
PHPInstallmemcache
Windows下Memcached的安装配置方法
1、将第一个包解压放某个盘下面,比如在c:\memcached。
2、在终端(也即cmd命令界面)下输入 'c:\memcached\memcached.exe -d install' 安装。
3、再输入: 'c:\memcached\memcached.exe -d start' 启动。(需要注意的: 以后memcached将作为windo
- iOS开发学习路径的一些建议
dcj3sjt126com
ios
iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何开始,然后我吧啦吧啦回答写了很多。既然敲了那么多字,我就把我写的回复也贴到博客里来分享,希望能对大家有帮助。欢迎大家也到帖子里讨论和分享,地址:http://bbs.csdn.net/topics/390920759
下面是我回复的内容:
结合自己情况聊下iOS学习建议,
- Javascript闭包概念
fanfanlovey
JavaScript闭包
1.参考资料
http://www.jb51.net/article/24101.htm
http://blog.csdn.net/yn49782026/article/details/8549462
2.内容概述
要理解闭包,首先需要理解变量作用域问题
内部函数可以饮用外面全局变量
var n=999;
functio
- yum安装mysql5.6
haisheng
mysql
1、安装http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
2、yum install mysql
3、yum install mysql-server
4、vi /etc/my.cnf 添加character_set_server=utf8
- po/bo/vo/dao/pojo的详介
IT_zhlp80
javaBOVODAOPOJOpo
JAVA几种对象的解释
PO:persistant object持久对象,可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作.
VO:value object值对象。通常用于业务层之间的数据传递,和PO一样也是仅仅包含数据而已。但应是抽象出的业务对象,可
- java设计模式
kerryg
java设计模式
设计模式的分类:
一、 设计模式总体分为三大类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
2、结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
3、行为型模式(11种):策略模式,模版方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者
- [1]CXF3.1整合Spring开发webservice——helloworld篇
木头.java
springwebserviceCXF
Spring 版本3.2.10
CXF 版本3.1.1
项目采用MAVEN组织依赖jar
我这里是有parent的pom,为了简洁明了,我直接把所有的依赖都列一起了,所以都没version,反正上面已经写了版本
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
- Google 工程师亲授:菜鸟开发者一定要投资的十大目标
qindongliang1922
工作感悟人生
身为软件开发者,有什么是一定得投资的? Google 软件工程师 Emanuel Saringan 整理了十项他认为必要的投资,第一项就是身体健康,英文与数学也都是必备能力吗?来看看他怎么说。(以下文字以作者第一人称撰写)) 你的健康 无疑地,软件开发者是世界上最久坐不动的职业之一。 每天连坐八到十六小时,休息时间只有一点点,绝对会让你的鲔鱼肚肆无忌惮的生长。肥胖容易扩大罹患其他疾病的风险,
- linux打开最大文件数量1,048,576
tianzhihehe
clinux
File descriptors are represented by the C int type. Not using a special type is often considered odd, but is, historically, the Unix way. Each Linux process has a maximum number of files th
- java语言中PO、VO、DAO、BO、POJO几种对象的解释
衞酆夼
javaVOBOPOJOpo
PO:persistant object持久对象
最形象的理解就是一个PO就是数据库中的一条记录。好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作。
BO:business object业务对象
封装业务逻辑的java对象