文章目录
写一段我将tensorflow移植到Android上的历程,希望后者能够避免我的坑,能更多的发展这个东西。
大体的路线是:
我的环境
一,先在Ubuntu虚拟机上操作
1,按照以前的经验,需要在Ubuntu上用tensorflow源码安装,再用bazel编译出
2,安装Android Studio、NDK和Bazel
3,Ubuntu安装tensorflow源码
4,Jar文件和So文件的解决方案
5,tensorflow训练pb文件
6、在Android的移植
二、从Ubuntu到windows
后话
过程中参考了其他一些博客,外加自己的修改,填坑,由于可能比较长,剩下的之后再补充吧。
采用的策略是tensorflow moblie
但是谷歌开发会议上提出了Tensorflow Lite相信不久这个将会是主流
本篇主要针对移植的方面说明,对Android和tf的细节并未做详细说明
本篇不恰当之处还请指正,欢迎评论区指出不足之处
这两个文件是tensorflow移植到Android的关键,外加Tensorflow训练保存的pb文件
3.model.pb(以下简称pb文件)
AS:直接在官网安装即可
NDK:可以再AS的manager里面直接下载安装,也可以在官网指定版本安装
Bazel:官网安装即可,我的下载 Bazel 0.13..0
注意:Bazel和NDK版本有限制(比如bazel13.0只支持02,13,14,15的NDK版本)但是AS里面默认安装最新版本,这里要注意
我当时安装的bazel13.0,只能匹配15及之前的NDK,而我的AS默认装的18版本,所以又去官网下载了15版本的NDK重弄了一下
因为我想最后移植到windows,(windows上的tf版本是1.8.0)所以在Ubuntu虚拟机上也指定了1.8.0版本下载
这一步需要在Github上将分支从master选择到自己选择的版本,在git clone一下,将源码下载下来
/.configure安装 tf源码
小插曲:升级pip后出现Python脚本程序出现:ImportError: cannot import name main
解决方案:参考了这篇博客 升级pip后出现ImportError: cannot import name main
安装成功后就可以通过bazel来编译源码,产生jar和文件和so文件
出现问题,编译不出来,所有环境都配好了但是出不来
解决方案:准备跳过编译环节,直接下载jar文件和so文件,
主要参考:tf移植Android
Jar和so文件github官网上貌似已经不提供下载了
两个文件下载地址(为此我收集的两个版本jar和so文件)
jar+so(jdk7):jar+so文件jdk7版本
jar+so(jdk8):jar+so文件jdk8版本
需要注意的是:两个版本的jar和so文件提供的tensorflow接口有所不同
这个是jdk7版本的
//整个流程核心的三个接口
TensorFlowInferenceInterface.fillNodeFloat(); //输入数据
TensorFlowInferenceInterface.runInference(); //模型运行
TensorFlowInferenceInterface.readNodeFloat(); //得到输出数据
而这个是jdk8版本的
//jdk8版本的
TensorFlowInferenceInterface.feed()//输入
TensorFlowInferenceInterface.run()//运行
TensorFlowInferenceInterface.fetch()//输出
可以根据需要按照自己的方式选择
自己随便写了一个模型,这里必须要保存为pb文件,使用到的模块
from tensorflow.python.framework import graph_util
# -*- coding: utf-8 -*-
"""
Created on Sat Sep 22 20:18:18 2018
保存模型
@author: hhuaf
"""
import tensorflow as tf
from tensorflow.python.framework import graph_util
import os
pb_file_path = os.getcwd()
with tf.Session(graph=tf.Graph()) as sess:
x = tf.placeholder(tf.float32, name='input')
w = tf.Variable(tf.random_normal([1]), name='weight')
b = tf.Variable(1.0, name='b')
xy = tf.multiply(x, w)
# 这里的输出需要加上name属性
op = tf.add(x, x, name='output')
sess.run(tf.global_variables_initializer())
# convert_variables_to_constants 需要指定output_node_names,list(),可以多个
constant_graph = graph_util.convert_variables_to_constants(sess, sess.graph_def, ['output'])
# 测试 OP
feed_dict = {x: 5.0}
print(sess.run(op, feed_dict))
print('w',w.eval(),'b',b.eval())
# 写入序列化的 PB 文件
with tf.gfile.FastGFile(pb_file_path+'model.pb', mode='wb') as f:
f.write(constant_graph.SerializeToString())
# 输出
# INFO:tensorflow:Froze 1 variables.
# Converted 1 variables to const ops.
# 31
注意保存的时候输出的名字一定要记住[output]
得到pb文件后就可以在Android上面开始移植了
我是下载了18年编译的java8的so文件和jar文件,加上上面训练的简单模型
环境配置方面很大程度上借鉴了这篇博客:将TensorFlow训练好的模型迁移到Android APP上
具体来说就是在app/src/main/下创建assets文件夹,里面放置我们训练好的pb文件
在app目录下创建libs文件夹(若有了就不用创建)放置jar文件
再libs目录下再创建armeabi-v7a文件夹,里面放置so文件
在app下的gradle里添加配置如下。后面的dependencies会自动添加(AS的好处)
apply plugin: 'com.android.application'
android {
compileSdkVersion 28
defaultConfig {
applicationId "com.example.hhuaf.tf_new1"
minSdkVersion 15
targetSdkVersion 28
versionCode 1
versionName "1.0"
testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"
multiDexEnabled true//新加
ndk {//新加
abiFilters "armeabi-v7a"//新加
}//新加
}
buildTypes {
release {
minifyEnabled false
proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro'
}
}
//新加
sourceSets {//新加
main {//新加
jni.srcDirs = []//新加
jniLibs.srcDirs = ['libs']//新加
}//新加
}//新加
}
dependencies {
implementation fileTree(include: ['*.jar'], dir: 'libs')
implementation 'com.android.support:appcompat-v7:28.0.0'
implementation 'com.android.support.constraint:constraint-layout:1.1.3'
testImplementation 'junit:junit:4.12'
androidTestImplementation 'com.android.support.test:runner:1.0.2'
androidTestImplementation 'com.android.support.test.espresso:espresso-core:3.0.2'
implementation files('libs/libandroid_tensorflow_inference_java.jar')
}
跑了通第一个demo
整体来说流程是这样
除开bazel编译so和jar文件外,其实Linux和windows的移植并无差别,在有so,jar文件情况下,可以无视环境不同,直接移植
在win环境的AS配置方法与ubuntu完全一样,能成功移植
虽然移植成功了,但是并没有通过编译过程,其实有点取巧,希望有大佬来提供一个成功编译的方案,有修改的地方以后会修改,如果参考的几篇博客有侵权的地方,我会马上删除!