目标检测中的一些概念

一、IOU定义

IOU定义了两个bounding box的重叠度,如下图所示:
目标检测中的一些概念_第1张图片
矩形框A、B的一个重合度IOU计算公式为:

IOU=(A∩B)/(A∪B)

就是矩形框A、B的重叠面积占A、B并集的面积比例:

IOU=SI/(SA+SB-SI)

二、非极大值抑制

从一张图片中找出n多个可能是物体的矩形框,然后为每个矩形框为做类别分类概率:
目标检测中的一些概念_第2张图片
就像上面的图片一样,定位一个车辆,最后算法就找出了一堆的方框,我们需要判别哪些矩形框是没用的。非极大值抑制:先假设有6个矩形框,根据分类器类别分类概率做排序,从小到大分别属于车辆的概率分别为A、B、C、D、E、F。

(1)从最大概率矩形框F开始,分别判断A~E与F的重叠度IOU是否大于某个设定的阈值;

(2)假设B、D与F的重叠度超过阈值,那么就扔掉B、D;并标记第一个矩形框F,是我们保留下来的。

(3)从剩下的矩形框A、C、E中,选择概率最大的E,然后判断E与A、C的重叠度,重叠度大于一定的阈值,那么就扔掉;并标记E是我们保留下来的第二个矩形框。

就这样一直重复,找到所有被保留下来的矩形框。

你可能感兴趣的:(深度学习)