学习Mahout(三)

开发+运行第一个Mahout的程序

代码:

/**
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package chen.test.kmeans;

import java.util.List;
import java.util.Map;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.util.ToolRunner;
import org.apache.mahout.clustering.Cluster;
import org.apache.mahout.clustering.canopy.CanopyDriver;
import org.apache.mahout.clustering.conversion.InputDriver;
import org.apache.mahout.clustering.kmeans.KMeansDriver;
import org.apache.mahout.clustering.kmeans.RandomSeedGenerator;
import org.apache.mahout.common.AbstractJob;
import org.apache.mahout.common.ClassUtils;
import org.apache.mahout.common.HadoopUtil;
import org.apache.mahout.common.commandline.DefaultOptionCreator;
import org.apache.mahout.common.distance.DistanceMeasure;
import org.apache.mahout.common.distance.EuclideanDistanceMeasure;
import org.apache.mahout.common.distance.SquaredEuclideanDistanceMeasure;
import org.apache.mahout.utils.clustering.ClusterDumper;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public final class TwoJob extends AbstractJob {
  
  private static final Logger log = LoggerFactory.getLogger(TwoJob.class);
  
  private static final String DIRECTORY_CONTAINING_CONVERTED_INPUT = "data";
  
  private TwoJob() {
  }
  
  public static void main(String[] args) throws Exception {
    if (args.length > 0) {
      log.info("Running with only user-supplied arguments");
      ToolRunner.run(new Configuration(), new TwoJob(), args);
    } else {
      log.info("Running with default arguments");
      Path output = new Path("output");
      Configuration conf = new Configuration();
      HadoopUtil.delete(conf, output);
      run(conf, new Path("testdata"), output, new EuclideanDistanceMeasure(), 2, 0.5, 10);
    }
  }
  
  @Override
  public int run(String[] args) throws Exception {
    addInputOption();
    addOutputOption();
    addOption(DefaultOptionCreator.distanceMeasureOption().create());
    addOption(DefaultOptionCreator.numClustersOption().create());
    addOption(DefaultOptionCreator.t1Option().create());
    addOption(DefaultOptionCreator.t2Option().create());
    addOption(DefaultOptionCreator.convergenceOption().create());
    addOption(DefaultOptionCreator.maxIterationsOption().create());
    addOption(DefaultOptionCreator.overwriteOption().create());
    
    Map<String,List<String>> argMap = parseArguments(args);
    if (argMap == null) {
      return -1;
    }
    
    Path input = getInputPath();
    Path output = getOutputPath();
    String measureClass = getOption(DefaultOptionCreator.DISTANCE_MEASURE_OPTION);
    if (measureClass == null) {
      measureClass = SquaredEuclideanDistanceMeasure.class.getName();
    }
    double convergenceDelta = Double.parseDouble(getOption(DefaultOptionCreator.CONVERGENCE_DELTA_OPTION));
    int maxIterations = Integer.parseInt(getOption(DefaultOptionCreator.MAX_ITERATIONS_OPTION));
    if (hasOption(DefaultOptionCreator.OVERWRITE_OPTION)) {
      HadoopUtil.delete(getConf(), output);
    }
    DistanceMeasure measure = ClassUtils.instantiateAs(measureClass, DistanceMeasure.class);
    if (hasOption(DefaultOptionCreator.NUM_CLUSTERS_OPTION)) {
      int k = Integer.parseInt(getOption(DefaultOptionCreator.NUM_CLUSTERS_OPTION));
      run(getConf(), input, output, measure, k, convergenceDelta, maxIterations);
    } else {
      double t1 = Double.parseDouble(getOption(DefaultOptionCreator.T1_OPTION));
      double t2 = Double.parseDouble(getOption(DefaultOptionCreator.T2_OPTION));
      run(getConf(), input, output, measure, t1, t2, convergenceDelta, maxIterations);
    }
    return 0;
  }
  
  /**
   * Run the kmeans clustering job on an input dataset using the given the number of clusters k and iteration
   * parameters. All output data will be written to the output directory, which will be initially deleted if it exists.
   * The clustered points will reside in the path <output>/clustered-points. By default, the job expects a file
   * containing equal length space delimited data that resides in a directory named "testdata", and writes output to a
   * directory named "output".
   * 
   * @param conf
   *          the Configuration to use
   * @param input
   *          the String denoting the input directory path
   * @param output
   *          the String denoting the output directory path
   * @param measure
   *          the DistanceMeasure to use
   * @param k
   *          the number of clusters in Kmeans
   * @param convergenceDelta
   *          the double convergence criteria for iterations
   * @param maxIterations
   *          the int maximum number of iterations
   */
  public static void run(Configuration conf, Path input, Path output, DistanceMeasure measure, int k,
      double convergenceDelta, int maxIterations) throws Exception {
    Path directoryContainingConvertedInput = new Path(output, DIRECTORY_CONTAINING_CONVERTED_INPUT);
    log.info("Preparing Input");
    InputDriver.runJob(input, directoryContainingConvertedInput, "org.apache.mahout.math.RandomAccessSparseVector");
    log.info("Running random seed to get initial clusters");
    Path clusters = new Path(output, "random-seeds");
    clusters = RandomSeedGenerator.buildRandom(conf, directoryContainingConvertedInput, clusters, k, measure);
    log.info("Running KMeans with k = {}", k);
    KMeansDriver.run(conf, directoryContainingConvertedInput, clusters, output, convergenceDelta,
        maxIterations, true, 0.0, false);
    // run ClusterDumper
    Path outGlob = new Path(output, "clusters-*-final");
    Path clusteredPoints = new Path(output,"clusteredPoints");
    log.info("Dumping out clusters from clusters: {} and clusteredPoints: {}", outGlob, clusteredPoints);
    ClusterDumper clusterDumper = new ClusterDumper(outGlob, clusteredPoints);
    
    //print the result
    clusterDumper.printClusters(null);
    
    
  }
  
  /**
   * Run the kmeans clustering job on an input dataset using the given distance measure, t1, t2 and iteration
   * parameters. All output data will be written to the output directory, which will be initially deleted if it exists.
   * The clustered points will reside in the path <output>/clustered-points. By default, the job expects the a file
   * containing synthetic_control.data as obtained from
   * http://archive.ics.uci.edu/ml/datasets/Synthetic+Control+Chart+Time+Series resides in a directory named "testdata",
   * and writes output to a directory named "output".
   * 
   * @param conf
   *          the Configuration to use
   * @param input
   *          the String denoting the input directory path
   * @param output
   *          the String denoting the output directory path
   * @param measure
   *          the DistanceMeasure to use
   * @param t1
   *          the canopy T1 threshold
   * @param t2
   *          the canopy T2 threshold
   * @param convergenceDelta
   *          the double convergence criteria for iterations
   * @param maxIterations
   *          the int maximum number of iterations
   */
  public static void run(Configuration conf, Path input, Path output, DistanceMeasure measure, double t1, double t2,
      double convergenceDelta, int maxIterations) throws Exception {
    Path directoryContainingConvertedInput = new Path(output, DIRECTORY_CONTAINING_CONVERTED_INPUT);
    log.info("Preparing Input");
    InputDriver.runJob(input, directoryContainingConvertedInput, "org.apache.mahout.math.RandomAccessSparseVector");
    log.info("Running Canopy to get initial clusters");
    Path canopyOutput = new Path(output, "canopies");
    CanopyDriver.run(new Configuration(), directoryContainingConvertedInput, canopyOutput, measure, t1, t2, false, 0.0,
        false);
    log.info("Running KMeans");
    KMeansDriver.run(conf, directoryContainingConvertedInput, new Path(canopyOutput, Cluster.INITIAL_CLUSTERS_DIR
        + "-final"), output, convergenceDelta, maxIterations, true, 0.0, false);
    // run ClusterDumper
    ClusterDumper clusterDumper = new ClusterDumper(new Path(output, "clusters-*-final"), new Path(output,
        "clusteredPoints"));
    clusterDumper.printClusters(null);
  }
}

上面的代码就是上一篇的example 例子,使用kmeans 实现聚集。

build.xml代码

<project name="mahout_test" default="jar">

   <property name="root.dir" value="." />
   <property name="src.dir" value="${root.dir}/src" />
   <property name="lib.dir" value="${root.dir}/lib" />
   <property name="build.dir" value="${root.dir}/build" />
   
   <target name="clean" depends="">
      <echo>root = ${root.dir}</echo>
      <delete dir="${build.dir}" />
      
      <mkdir dir="${build.dir}" />

   </target>
   
   <target name="build" depends="clean">
      <javac fork="true" debug="true" srcdir="${src.dir}" destdir="${build.dir}">
         <classpath>
            <fileset dir="${lib.dir}" includes="*.jar" />
         </classpath>
      </javac>
      
   </target>
   
   <target name="jar" depends="build">
         <mkdir dir="${build.dir}/lib" />
       <!--
         <copy file="${lib.dir}/mahout-core-0.9.jar" todir="${build.dir}/lib" />
         <copy file="${lib.dir}/mahout-integration-0.9.jar" todir="${build.dir}/lib" />
      <copy file="${lib.dir}/hadoop-core-1.2.1.jar" todir="${build.dir}/lib" />
       -->
       
       <copy file="${lib.dir}/mahout-examples-0.9-job.jar" todir="${build.dir}/lib" />
       <!--
       <copy file="${lib.dir}/mahout-integration-0.9.jar" todir="${build.dir}/lib" />
       -->
         <jar destfile="${root.dir}/mahout_test.jar" basedir="${build.dir}" >
         <manifest>
            <!--
             <attribute name="Main-Class" value="chen/test/Job" />
             -->
         </manifest>
         </jar>
   </target>
   
</project>

编译命令:

ant -f build.xml

编译后,它会在${root.dir}下生成一个 mahout_test.jar 的文件。

编译程序依赖的jar包:mahout-core-0.9-job.jar、mahout-examples-0.9-job.jar、hadoop-core-1.2.1.jar

其中mahout-core-0.9.jar 包只是使用了org.slf4j.Logger、org.slf4j.LoggerFactory 类

你也可以依赖 hadoop lib 的 slf4j-api-1.4.3.jar 包来替换 mahout-core-0.9-job.jar 包。

制作Mahout 程序的关键在与在生成 jar 包时,要包含mahout-examples-0.9-job.jar 包。否则hadoop jar **.jar 运行是会出错。

<copy file="${lib.dir}/mahout-examples-0.9-job.jar" todir="${build.dir}/lib" />

mahout-examples-0.9-job.jar 包里面的类和 mahout-core-0.9-job.jar 包的类有很多是重叠的,这个实在太坑了。如果同时加载两个jar 包,它就报错,说找不到相应的类。

我被这个问题困扰了很久。

而且编译时,不要指定Main Class ,否则也会出错,原因我也没有细究,知道的同学可以留言。

运行命令:

bin/hadoop jar /mnt/hgfs/mnt/chenfool/mahout_test.jar  chen.test.kmeans.TwoJob

运行的环境和上一篇的要求相似,也需要再 HDFS 的 /user/${user}/testdata 目录下存在向量文件。

你可能感兴趣的:(Mahout)