【Canal源码分析】整体架构

本文详解canal的整体架构。

一、整体架构

【Canal源码分析】整体架构_第1张图片
canal架构图.png
【Canal源码分析】整体架构_第2张图片
canal架构图2.png

说明:

  • server代表一个canal运行实例,对应于一个jvm
  • instance对应于一个数据队列 (1个server对应1..n个instance)

instance模块:

  • eventParser (数据源接入,模拟slave协议和master进行交互,协议解析)
  • eventSink (Parser和Store链接器,进行数据过滤,加工,分发的工作)
  • eventStore (数据存储)
  • metaManager (增量订阅&消费信息管理器)

二、各模块架构

2.1 Parser

【Canal源码分析】整体架构_第3张图片
EventParser架构.png

整个parser过程大致可分为几步:

  • Connection获取上一次解析成功的位置(如果第一次启动,则获取初始制定的位置或者是当前数据库的binlog位点)
  • Connection建立连接,发生BINLOG_DUMP命令
  • Mysql开始推送Binary Log
  • 接收到的Binary Log通过Binlog parser进行协议解析,补充一些特定信息
  • 传递给EventSink模块进行数据存储,是一个阻塞操作,直到存储成功
  • 存储成功后,定时记录Binary Log位置

2.2 Sink

【Canal源码分析】整体架构_第4张图片
Sink.png

说明:

  • 数据过滤:支持通配符的过滤模式,表名,字段内容等
  • 数据路由/分发:解决1:n (1个parser对应多个store的模式)
  • 数据归并:解决n:1 (多个parser对应1个store)
  • 数据加工:在进入store之前进行额外的处理,比如join

1 数据1:n业务 :

为了合理的利用数据库资源, 一般常见的业务都是按照schema进行隔离,然后在mysql上层或者dao这一层面上,进行一个数据源路由,屏蔽数据库物理位置对开发的影响,阿里系主要是通过cobar/tddl来解决数据源路由问题。 所以,一般一个数据库实例上,会部署多个schema,每个schema会有由1个或者多个业务方关注。

2 数据n:1业务:

同样,当一个业务的数据规模达到一定的量级后,必然会涉及到水平拆分和垂直拆分的问题,针对这些拆分的数据需要处理时,就需要链接多个store进行处理,消费的位点就会变成多份,而且数据消费的进度无法得到尽可能有序的保证。 所以,在一定业务场景下,需要将拆分后的增量数据进行归并处理,比如按照时间戳/全局id进行排序归并.

2.3 Store

目前实现了Memory内存、本地file存储以及持久化到zookeeper以保障数据集群共享。
Memory内存的RingBuffer设计:

【Canal源码分析】整体架构_第5张图片
store ringBuffer.png

定义了3个cursor

  • Put : Sink模块进行数据存储的最后一次写入位置
  • Get : 数据订阅获取的最后一次提取位置
  • Ack : 数据消费成功的最后一次消费位置

借鉴Disruptor的RingBuffer的实现,将RingBuffer拉直来看:

【Canal源码分析】整体架构_第6张图片
store ringBuffer2.png

实现说明:

Put/Get/Ack cursor用于递增,采用long型存储
buffer的get操作,通过取余或者与操作。(与操作: cusor & (size – 1) , size需要为2的指数,效率比较高)

你可能感兴趣的:(【Canal源码分析】整体架构)