LR模型的特征归一化和离散化

知乎问题:https://www.zhihu.com/question/31989952

为什么LR需要归一化或者取对数?

归一化:可以提高收敛速度,提高收敛的精度;

为什么LR把特征离散化后效果更好?离散化的好处有哪些?

逻辑回归属于广义线性模型,表达能力受限;
在工业界,很少直接将连续值作为逻辑回归模型的特征输入,而是将连续特征离散化为一系列0、1特征交给逻辑回归模型,这样做的优势有以下几点:

  1. 逻辑回归属于广义线性模型,表达能力受限;单变量离散化为N个后,每个变量有单独的权重,相当于为模型引入了非线性,能够提升模型表达能力,加大拟合;
  2. 离散化后可以进行特征交叉,由M+N个变量变为M*N个变量,进一步引入非线性,提升表达能力;
  3. 特征离散化以后,起到了简化了逻辑回归模型的作用,降低了模型过拟合的风险。
  4. 离散特征的增加和减少都很容易,易于模型的快速迭代;
  5. 稀疏向量内积乘法运算速度快,计算结果方便存储,容易扩展;
  6. 离散化后的特征对异常数据有很强的鲁棒性:比如一个特征是年龄>30是1,否则0。如果特征没有离散化,一个异常数据“年龄300岁”会给模型造成很大的干扰;
  7. 特征离散化后,模型会更稳定,比如如果对用户年龄离散化,20-30作为一个区间,不会因为一个用户年龄长了一岁就变成一个完全不同的人。当然处于区间相邻处的样本会刚好相反,所以怎么划分区间是门学问;

李沐曾经说过:模型是使用离散特征还是连续特征,其实是一个“海量离散特征+简单模型” 同 “少量连续特征+复杂模型”的权衡。既可以离散化用线性模型,也可以用连续特征加深度学习。就看是喜欢折腾特征还是折腾模型了。

你可能感兴趣的:(LR模型的特征归一化和离散化)