- OD C卷【热点网站统计】
laufing
OD算法题C卷自定义排序
题目企业路由器的统计页面,有一个功能需要动态统计公司访问最多的网页URLtopN,设计一个算法,可以高效动态统计TopN的页面;输入描述:每一行都是一个url或者一个数字;如果是url,代表一段时间内的网页访问,如果是一个数字N,代表本次需要输出的TopN个url;输入约束:总访问网页数量小于5000个,单网页访问次数小于65535次;网页url仅由字母、数字、点组成,且长度小于等于127字节;数
- 深度学习图像算法中的网络架构:Backbone、Neck 和 Head 详解
肥猪猪爸
#深度学习深度学习算法人工智能数据结构神经网络计算机视觉机器学习
深度学习已经成为图像识别领域的核心技术,特别是在目标检测、图像分割等任务中,深度神经网络的应用取得了显著进展。在这些任务的网络架构中,通常可以分为三个主要部分:Backbone、Neck和Head。这些部分在整个网络中扮演着至关重要的角色,它们各自处理不同的任务,从特征提取到最终的预测输出,形成了一个完整的图像处理流程。本文将详细介绍这三部分的作用以及它们在目标检测和图像分割中的应用,帮助大家更好
- NL2SQL技术方案系列(6):金融领域知识检索,NL2SQL技术方案以及行业案例实战讲解4
汀、人工智能
LLM工业级落地实践人工智能NL2SQLLLM自然语言处理copilot知识检索语义搜索
NL2SQL技术方案系列(6):金融领域NL2SQL技术方案以及行业案例实战讲解4NL2SQL基础系列(1):业界顶尖排行榜、权威测评数据集及LLM大模型(SpidervsBIRD)全面对比优劣分析[Text2SQL、Text2DSL]NL2SQL基础系列(2):主流大模型与微调方法精选集,Text2SQL经典算法技术回顾七年发展脉络梳理NL2SQL进阶系列(1):DB-GPT-Hub、SQLco
- Random指定随机种子遇到的坑
咖啡程序员
Random
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言指定随机种子出现的问题?总结前言业务中,之前有一个抽奖的需求,之初想让固定的奖品和玩家绑定一个固定的池子,也就是每个用户对应抽奖的池子的随机种子是固定的!但是这样就会遇到一个巨大的坑!在指定Random随机种子的时候一定要谨慎!指定随机种子出现的问题?在计算机编程中,随机数生成算法实际上是通过确定性的计算来产生伪随机数序列
- 大数据新视界 -- 大数据大厂之 Hive 数据压缩算法对比与选择(下)(20 / 30)
青云交
大数据新视界#Hive之道大数据Hive数据压缩压缩算法对比选择因素案例分析实时数据处理数据存储优化sql
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- 密码机服务器在云计算中的应用与挑战
SafePloy安策
服务器云计算运维
随着云计算技术的迅猛发展和普及,密码机服务器作为一种高效、专业的数据安全解决方案,正在云计算领域中扮演着越来越重要的角色。本文将探讨密码机服务器在云计算中的应用及其面临的挑战。云计算技术涉及大量的数据传输和存储,数据的安全性和隐私性是一大挑战。密码机服务器,作为数据安全的核心设备,通过先进的加密算法和高速处理芯片,为服务器上的数据提供高强度、实时的加密解密服务。与传统的软件加密相比,硬件级别的加密
- 手把手教你学simulink(79.1)--智能家居窗帘与窗户控制场景实例:基于Simulink设计和仿真一个智能窗帘与窗户控制系统,以实现对室内环境的有效管理
小蘑菇二号
手把手教你学MATLAB专栏手把手教你学Simulinkmatlabsimulink
目录智能窗帘与窗户控制系统场景下的天气适应性操作建模项目实例项目背景介绍系统架构1.传感器模块(Sensors)2.控制器模块(Controller)3.执行器模块(Actuator)4.通信模块(Communication)仿真实现步骤1.创建新的Simulink模型2.添加传感器模块光照传感器温度传感器天气传感器在Simulink中实现传感器模块3.添加控制器模块天气分析算法决策算法在Simu
- 遗传算法与深度学习实战(25)——使用Keras构建卷积神经网络
盼小辉丶
遗传算法与深度学习实战深度学习kerascnn
遗传算法与深度学习实战(25)——使用Keras构建卷积神经网络0.前言1.卷积神经网络基本概念1.1卷积1.2步幅1.3填充1.4激活函数1.5池化2.使用Keras构建卷积神经网络3.CNN层的问题4.模型泛化小结系列链接0.前言卷积神经网络(ConvolutionalNeuralNetwork,CNN)的提出是为了解决传统神经网络的缺陷。即使对象位于图片中的不同位置或其在图像中具有不同占比,
- Unity|Tetris|俄罗斯方块复刻2|核心代码(C#)
ChoSeitaku
Unityunityc#游戏引擎
Board.csusingUnityEngine;usingUnityEngine.Tilemaps;[DefaultExecutionOrder(-1)]//确保这个脚本在其他脚本之前执行publicclassBoard:MonoBehaviour{publicTilemaptilemap{get;privateset;}//游戏面板的Tilemap组件publicPieceactivePiec
- 经典约瑟夫环问题(多种解法)
曦月逸霜
数据结构算法
约瑟夫环(猴子选大王问题)前言本文是基于懒猫老师的数据结构课程所编写,我在这里直接给上地址:课程链接1.循环链表实现具体算法思想的文字图片描述后面补:…可以去看懒猫老师课程·或者我下面代码中的笔记去理解#include#include/*约瑟夫环可以联想成猴子选大王的问题,*约瑟夫问题:有n只猴子,按顺时针方向围成一圈选大王(编号从1到n),*从第1号开始报数,一直数到m,数到m的猴子退出圈外,剩
- c++扫雷9乘9
小兲lyy
c++算法开发语言
这应该是本站最简单的,代码最少的扫雷程序罢。运用了随机数,函数,以及一些简单的算法#include#includeusingnamespacestd;intmap[10][10],boom[10][2],x,y,knowmap[10][10],doit,f=9,yesf;voidaction(){//初始化雷的位置for(inti=1;i>x;cout>y;cout>doit;do_it(doit
- leetcode 面试经典 150 题:快乐数
码流怪侠
数据结构与算法leetcode面试算法哈希表数据结构与算法unordered_set快乐数
链接快乐数题序号202题型数组解题方法哈希表难度简单熟练度✅✅✅✅题目编写一个算法来判断一个数n是不是快乐数。[快乐数]定义为:对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和。然后重复这个过程直到这个数变为1,也可能是无限循环但始终变不到1。如果这个过程结果为1,那么这个数就是快乐数。如果n是快乐数就返回true;不是,则返回false。示例1:输入:n=19输出:true解释:12
- Python加密算法有哪些?有什么作用?
Python中的常见加密算法及其应用加密算法在现代计算机科学中扮演着至关重要的角色,它们用于保护数据的机密性、完整性和验证身份。在Python中,有许多加密算法可以使用,它们各自具有不同的特点和应用场景。以下是一些常见的加密算法及其详细介绍:1.AES(AdvancedEncryptionStandard)️简介:AES是一种对称加密算法,广泛用于保护敏感数据,属于块加密算法。AES有三种密钥长度
- 遗传算法与深度学习实战(26)——编码卷积神经网络架构
盼小辉丶
遗传算法与深度学习实战深度学习cnn遗传算法
遗传算法与深度学习实战(26)——编码卷积神经网络架构0.前言1.EvoCNN原理1.1工作原理1.2基因编码2.编码卷积神经网络架构小结系列链接0.前言我们已经学习了如何构建卷积神经网络(ConvolutionalNeuralNetwork,CNN),在本节中,我们将了解如何将CNN模型的网络架构编码为基因,这是将基因序列进化在为给定数据集上训练最佳模型的先决条件。1.EvoCNN原理进化卷积神
- 多维偏好分析及其在实际决策中的应用:基于PCA-KMeans的数据降维与模式识别方法
多维偏好分析(MultidimensionalPreferenceAnalysis,MPA)是一种在市场营销、心理学和公共政策等领域广泛应用的分析工具,用于研究多维度下的复杂偏好决策过程。在高维数据集中,当属性与偏好之间存在非线性关系或维度重叠时,偏好的理解和可视化呈现出显著的技术挑战。本文本将研究采用主成分分析(PrincipalComponentAnalysis,PCA)和K均值聚类算法对鸢尾
- 关于2025年智能化招聘管理系统平台发展趋势
yongyoudayee
数智招聘
2025年,招聘管理领域正站在变革的十字路口,全新的技术浪潮与不断变化的职场生态相互碰撞,促使招聘管理系统成为重塑企业人才战略的关键力量。智能化招聘管理系统平台在这一背景下迅速崛起,其发展趋势不仅影响企业的招聘效率与质量,还深刻改变着人力资源市场的生态格局。一、智能化招聘管理系统平台的核心特征与发展趋势1.深度学习算法与大数据分析的应用2025年的招聘管理系统将依托深度学习算法与大数据分析,彻底颠
- 《C++ 赋能强化学习:Q - learning 算法的实现之路》
c++人工智能深度学习
在当今科技飞速发展的时代,人工智能无疑是最热门的领域之一,而强化学习作为其中的重要分支,正逐渐改变着我们解决复杂问题的方式。Q-learning算法作为强化学习中的经典算法,在众多领域如游戏、机器人控制、资源管理等有着广泛的应用前景。本文将深入探讨如何用C++实现强化学习中的Q-learning算法,带您领略C++在人工智能领域的强大魅力。一、强化学习与Q-learning算法概述强化学习是一种通
- 搜广推日常实习面经一
Y1nhl
搜广推面经深度优先算法python推荐算法搜索引擎pytorch深度学习
写在前面:除了校招的面经,实习的面经我也会更新,毕竟俺后续可能还要找一段实习。从八股来看,实习的八股更加的八股一点。和校招的面经有点不一样,所以还是可以学习了解一下。总之一句话:面向工作学习,而不是面向实验室学习!唯品会广州—搜索算法实习生一、手撕二叉树的最大深度_力扣104深度优先遍历+递归#Definitionforabinarytreenode.#classTreeNode:#def__in
- 第十三届蓝桥杯b组国赛dp问题
鱼香rose__
#蓝桥杯#动态规划蓝桥杯算法c++
第十三届蓝桥杯b组国赛dp问题\Huge{第十三届蓝桥杯b组国赛dp问题}第十三届蓝桥杯b组国赛dp问题刷题的时候发现往年国赛题中有三道dp问题,而且还都是背包问题,正好最近没写过dp,那就简单整理一下,尽量把我思路整理清楚hhh。关于背包问题,可以查看这篇博客:背包九讲——九种背包问题的算法思路+代码分析-CSDN博客题目链接:备赛蓝桥杯-蓝桥云课(lanqiao.cn)文章目录2022题意思路
- PID算法基础
weixin_52799893
算法
1.基础介绍PID(比例-积分-微分)是一种常用的控制器,通常用于调节过程控制系统中的稳态误差。它是由三个基本部分组成的:比例(P)、积分(I)和微分(D)。比例部分:它是最简单和最基本的部分,主要作用是纠正偏差。当系统偏离目标值时,比例部分会根据偏差的大小产生一个相应的输出,以尝试将系统带回目标值。积分部分:这部分的作用是消除系统的稳态误差。只要系统存在误差,积分部分就会产生一个相应的输出,以尝
- 理解音频效果处理中的滤波器:通俗易懂的讲解与实用例子
Crazy learner
音频基础滤波器音频
目录1.**混响(Reverb)****算法混响效果(AlgorithmicReverb)**2.**压缩器(Compressor)****动态范围压缩(DynamicRangeCompression)**3.**低通滤波器(Low-PassFilter)**4.**高通滤波器(High-PassFilter)**5.**带通滤波器(Band-PassFilter)**6.**陷波滤波器(Notc
- 主动降噪技术:原理、方法与应用的深度解析
Crazy learner
音频基础主动降噪音频语音识别
目录一、主动降噪的原理二、主动降噪的技术分类三、主动降噪中的核心算法四、主动降噪的应用领域五、主动降噪技术的挑战与未来发展六、结论主动降噪(ActiveNoiseCancellation,ANC)是当前音频技术中的重要应用,广泛用于耳机、车辆、工业环境及航空等场景。与被动降噪(通过物理结构隔绝噪音)不同,主动降噪通过电子系统发出与噪声相位相反的声音信号来抵消噪音,从而达到降噪效果。随着电子元件和音
- 10分钟快速扫盲:以太坊与Layer2
在介绍以太坊前,我们先来了解一些区块链技术的基础知识。什么是区块链?区块链是一种分布式账本技术,它通过去中心化的方式,将交易记录以区块的形式链接在一起,并通过共识算法确保数据的安全和一致性。区块链的最著名应用就是比特币。区块链的核心特点是去中心化和安全性。去中心化:没有中心机构控制整个系统,而是由网络中的节点共同维护和验证数据。安全性:通过共识算法和加密技术来保证,使得数据不可篡改和抵御恶意攻击。
- 密评专用 双算法SSL证书申请
密评专用双算法SSL证书的申请过程涉及多个步骤,以下是详细的申请指南:一、选择CA机构并注册账号选择CA机构:选择一个受信任且提供双算法SSL证书服务的CA机构。JoySSL是一个知名的国产品牌,提供多种类型的证书,包括支持国际算法和国密算法的双算法SSL证书。注册账号:访问JoySSL官方网站,注册一个账号用于证书申请与下载。在注册过程中,可能需要填写一些基本信息,并在指定位置填写注册码(230
- [Python数据分析]最通俗入门Kmeans聚类分析,可视化展示代码。
William数据分析
pythonkmeans数据分析分类机器学习python
什么是k-means分析?【头条@William数据分析,看原版】想象一下,你有一堆五颜六色的糖果,你想把它们按照颜色分成几堆。k-means分析就是这么一个自动分类的过程。它会根据糖果的颜色特征,把它们分成若干个组,每个组里的糖果颜色都比较相似。更专业一点说,k-means分析是一种常用的聚类算法,它会将数据集中的数据点分成k个不同的簇。每个簇都有一个中心点,这个中心点就是簇中所有数据点的平均值
- visual studio 2022 激活码、激活教程、亲测可用
visualstudio2022(vs2022)是由微软官方出品的最新版本的开发工具包系列产品。它是一个完整的开发工具集,囊括了整visualstudio2022是一款由微软全新研发推出的编程开发软件,该软件能够为程序开发人员提供一个绝佳的IDE开发环境,可帮助用户高效率地杜绝错误代码,当用户输入错误代码的时候,系统即会自动将其标红,可完美支持C#、C++、Python、VisualBasic、N
- MurmurHash Tips(qbit)
pythonjavahash
简介MurmurHash是一种非加密型哈希函数(Non-cryptographichashfunction),适用于一般的哈希检索操作。与其它流行的哈希函数相比,对于规律性较强的key,MurmurHash的随机分布特征表现更良好。常见的MD5、SHA1是加密型哈希函数(Cryptographichashfunction)Hash算法评价杨保华《区块链·原理、设计与应用》第5章密码学与安全技术中讲
- YOLOV8涨点技巧之MCA多维协作注意力模块
呆头鹅AI工作室
深度学习算法详解及代码复现YOLO深度学习人工智能计算机视觉pythonconda
1.算法设计:基于MCA的YOLOv8优化1.1总体架构YOLOv8的优化算法在原有架构的基础上,引入了MCA模块,以增强特征提取能力和目标定位精度。MCA模块被嵌入到YOLOv8的主干网络(Backbone)和特征金字塔网络(FPN)中,用于捕捉多维度的上下文信息。1.2MCA模块设计MCA模块的核心思想是通过多维度的注意力机制(如通道注意力、空间注意力和尺度注意力)来增强特征表示。其结构如下:
- 设计一个缓存策略,动态缓存热点数据
「已注销」
智力题&场景题缓存数据库java排行榜
写在前面,因为我们最近的大作业项目需要用到热点排行这个功能,因为我们是要使用Elasticsearch来存储数据,然后最初设想是在ES中实现这个热点排行的功能,但是经过仔细思考,在我们这个项目中使用ES来做热点排行是一个很蠢的方式,因为我们这只是一个很小的排行,所以最终我们还是使用Redis来实现热点排行使用LRU?LRU是一种常见的算法,假如我们设定TOP10的热点数据,那么我们可以规定LRU容
- 211本硕二战腾讯大模型算法岗,已凉......
AI大模型入门
算法阿里云人工智能云计算目标跟踪
01背景本弱鸡211本硕,nlp,无论文有实习(老板没资源且放养),本科有acm经历(1铜),面试pcg日常实习。02技术一面(时长1h)Q1:了解什么机器学习算法,讲一下原理?当时只记得实体识别用到了隐马尔可夫模型,讲了讲怎么怎么定义观测状态和隐藏状态、前向传播、解码和应用场景。Q2:讲一下Bert的结构和怎么训练的,怎么用bert做下游任务?八股,双向transformerencoder结构,
- jQuery 跨域访问的三种方式 No 'Access-Control-Allow-Origin' header is present on the reque
qiaolevip
每天进步一点点学习永无止境跨域众观千象
XMLHttpRequest cannot load http://v.xxx.com. No 'Access-Control-Allow-Origin' header is present on the requested resource. Origin 'http://localhost:63342' is therefore not allowed access. test.html:1
- mysql 分区查询优化
annan211
java分区优化mysql
分区查询优化
引入分区可以给查询带来一定的优势,但同时也会引入一些bug.
分区最大的优点就是优化器可以根据分区函数来过滤掉一些分区,通过分区过滤可以让查询扫描更少的数据。
所以,对于访问分区表来说,很重要的一点是要在where 条件中带入分区,让优化器过滤掉无需访问的分区。
可以通过查看explain执行计划,是否携带 partitions
- MYSQL存储过程中使用游标
chicony
Mysql存储过程
DELIMITER $$
DROP PROCEDURE IF EXISTS getUserInfo $$
CREATE PROCEDURE getUserInfo(in date_day datetime)-- -- 实例-- 存储过程名为:getUserInfo-- 参数为:date_day日期格式:2008-03-08-- BEGINdecla
- mysql 和 sqlite 区别
Array_06
sqlite
转载:
http://www.cnblogs.com/ygm900/p/3460663.html
mysql 和 sqlite 区别
SQLITE是单机数据库。功能简约,小型化,追求最大磁盘效率
MYSQL是完善的服务器数据库。功能全面,综合化,追求最大并发效率
MYSQL、Sybase、Oracle等这些都是试用于服务器数据量大功能多需要安装,例如网站访问量比较大的。而sq
- pinyin4j使用
oloz
pinyin4j
首先需要pinyin4j的jar包支持;jar包已上传至附件内
方法一:把汉字转换为拼音;例如:编程转换后则为biancheng
/**
* 将汉字转换为全拼
* @param src 你的需要转换的汉字
* @param isUPPERCASE 是否转换为大写的拼音; true:转换为大写;fal
- 微博发送私信
随意而生
微博
在前面文章中说了如和获取登陆时候所需要的cookie,现在只要拿到最后登陆所需要的cookie,然后抓包分析一下微博私信发送界面
http://weibo.com/message/history?uid=****&name=****
可以发现其发送提交的Post请求和其中的数据,
让后用程序模拟发送POST请求中的数据,带着cookie发送到私信的接入口,就可以实现发私信的功能了。
- jsp
香水浓
jsp
JSP初始化
容器载入JSP文件后,它会在为请求提供任何服务前调用jspInit()方法。如果您需要执行自定义的JSP初始化任务,复写jspInit()方法就行了
JSP执行
这一阶段描述了JSP生命周期中一切与请求相关的交互行为,直到被销毁。
当JSP网页完成初始化后
- 在 Windows 上安装 SVN Subversion 服务端
AdyZhang
SVN
在 Windows 上安装 SVN Subversion 服务端2009-09-16高宏伟哈尔滨市道里区通达街291号
最佳阅读效果请访问原地址:http://blog.donews.com/dukejoe/archive/2009/09/16/1560917.aspx
现在的Subversion已经足够稳定,而且已经进入了它的黄金时段。我们看到大量的项目都在使
- android开发中如何使用 alertDialog从listView中删除数据?
aijuans
android
我现在使用listView展示了很多的配置信息,我现在想在点击其中一条的时候填出 alertDialog,点击确认后就删除该条数据,( ArrayAdapter ,ArrayList,listView 全部删除),我知道在 下面的onItemLongClick 方法中 参数 arg2 是选中的序号,但是我不知道如何继续处理下去 1 2 3
- jdk-6u26-linux-x64.bin 安装
baalwolf
linux
1.上传安装文件(jdk-6u26-linux-x64.bin)
2.修改权限
[root@localhost ~]# ls -l /usr/local/jdk-6u26-linux-x64.bin
3.执行安装文件
[root@localhost ~]# cd /usr/local
[root@localhost local]# ./jdk-6u26-linux-x64.bin&nbs
- MongoDB经典面试题集锦
BigBird2012
mongodb
1.什么是NoSQL数据库?NoSQL和RDBMS有什么区别?在哪些情况下使用和不使用NoSQL数据库?
NoSQL是非关系型数据库,NoSQL = Not Only SQL。
关系型数据库采用的结构化的数据,NoSQL采用的是键值对的方式存储数据。
在处理非结构化/半结构化的大数据时;在水平方向上进行扩展时;随时应对动态增加的数据项时可以优先考虑使用NoSQL数据库。
在考虑数据库的成熟
- JavaScript异步编程Promise模式的6个特性
bijian1013
JavaScriptPromise
Promise是一个非常有价值的构造器,能够帮助你避免使用镶套匿名方法,而使用更具有可读性的方式组装异步代码。这里我们将介绍6个最简单的特性。
在我们开始正式介绍之前,我们想看看Javascript Promise的样子:
var p = new Promise(function(r
- [Zookeeper学习笔记之八]Zookeeper源代码分析之Zookeeper.ZKWatchManager
bit1129
zookeeper
ClientWatchManager接口
//接口的唯一方法materialize用于确定那些Watcher需要被通知
//确定Watcher需要三方面的因素1.事件状态 2.事件类型 3.znode的path
public interface ClientWatchManager {
/**
* Return a set of watchers that should
- 【Scala十五】Scala核心九:隐式转换之二
bit1129
scala
隐式转换存在的必要性,
在Java Swing中,按钮点击事件的处理,转换为Scala的的写法如下:
val button = new JButton
button.addActionListener(
new ActionListener {
def actionPerformed(event: ActionEvent) {
- Android JSON数据的解析与封装小Demo
ronin47
转自:http://www.open-open.com/lib/view/open1420529336406.html
package com.example.jsondemo;
import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;
impor
- [设计]字体创意设计方法谈
brotherlamp
UIui自学ui视频ui教程ui资料
从古至今,文字在我们的生活中是必不可少的事物,我们不能想象没有文字的世界将会是怎样。在平面设计中,UI设计师在文字上所花的心思和功夫最多,因为文字能直观地表达UI设计师所的意念。在文字上的创造设计,直接反映出平面作品的主题。
如设计一幅戴尔笔记本电脑的广告海报,假设海报上没有出现“戴尔”两个文字,即使放上所有戴尔笔记本电脑的图片都不能让人们得知这些电脑是什么品牌。只要写上“戴尔笔
- 单调队列-用一个长度为k的窗在整数数列上移动,求窗里面所包含的数的最大值
bylijinnan
java算法面试题
import java.util.LinkedList;
/*
单调队列 滑动窗口
单调队列是这样的一个队列:队列里面的元素是有序的,是递增或者递减
题目:给定一个长度为N的整数数列a(i),i=0,1,...,N-1和窗长度k.
要求:f(i) = max{a(i-k+1),a(i-k+2),..., a(i)},i = 0,1,...,N-1
问题的另一种描述就
- struts2处理一个form多个submit
chiangfai
struts2
web应用中,为完成不同工作,一个jsp的form标签可能有多个submit。如下代码:
<s:form action="submit" method="post" namespace="/my">
<s:textfield name="msg" label="叙述:">
- shell查找上个月,陷阱及野路子
chenchao051
shell
date -d "-1 month" +%F
以上这段代码,假如在2012/10/31执行,结果并不会出现你预计的9月份,而是会出现八月份,原因是10月份有31天,9月份30天,所以-1 month在10月份看来要减去31天,所以直接到了8月31日这天,这不靠谱。
野路子解决:假设当天日期大于15号
- mysql导出数据中文乱码问题
daizj
mysql中文乱码导数据
解决mysql导入导出数据乱码问题方法:
1、进入mysql,通过如下命令查看数据库编码方式:
mysql> show variables like 'character_set_%';
+--------------------------+----------------------------------------+
| Variable_name&nbs
- SAE部署Smarty出现:Uncaught exception 'SmartyException' with message 'unable to write
dcj3sjt126com
PHPsmartysae
对于SAE出现的问题:Uncaught exception 'SmartyException' with message 'unable to write file...。
官方给出了详细的FAQ:http://sae.sina.com.cn/?m=faqs&catId=11#show_213
解决方案为:
01
$path
- 《教父》系列台词
dcj3sjt126com
Your love is also your weak point.
你的所爱同时也是你的弱点。
If anything in this life is certain, if history has taught us anything, it is
that you can kill anyone.
不顾家的人永远不可能成为一个真正的男人。 &
- mongodb安装与使用
dyy_gusi
mongo
一.MongoDB安装和启动,widndows和linux基本相同
1.下载数据库,
linux:mongodb-linux-x86_64-ubuntu1404-3.0.3.tgz
2.解压文件,并且放置到合适的位置
tar -vxf mongodb-linux-x86_64-ubun
- Git排除目录
geeksun
git
在Git的版本控制中,可能有些文件是不需要加入控制的,那我们在提交代码时就需要忽略这些文件,下面讲讲应该怎么给Git配置一些忽略规则。
有三种方法可以忽略掉这些文件,这三种方法都能达到目的,只不过适用情景不一样。
1. 针对单一工程排除文件
这种方式会让这个工程的所有修改者在克隆代码的同时,也能克隆到过滤规则,而不用自己再写一份,这就能保证所有修改者应用的都是同一
- Ubuntu 创建开机自启动脚本的方法
hongtoushizi
ubuntu
转载自: http://rongjih.blog.163.com/blog/static/33574461201111504843245/
Ubuntu 创建开机自启动脚本的步骤如下:
1) 将你的启动脚本复制到 /etc/init.d目录下 以下假设你的脚本文件名为 test。
2) 设置脚本文件的权限 $ sudo chmod 755
- 第八章 流量复制/AB测试/协程
jinnianshilongnian
nginxluacoroutine
流量复制
在实际开发中经常涉及到项目的升级,而该升级不能简单的上线就完事了,需要验证该升级是否兼容老的上线,因此可能需要并行运行两个项目一段时间进行数据比对和校验,待没问题后再进行上线。这其实就需要进行流量复制,把流量复制到其他服务器上,一种方式是使用如tcpcopy引流;另外我们还可以使用nginx的HttpLuaModule模块中的ngx.location.capture_multi进行并发
- 电商系统商品表设计
lkl
DROP TABLE IF EXISTS `category`; -- 类目表
/*!40101 SET @saved_cs_client = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `category` (
`id` int(11) NOT NUL
- 修改phpMyAdmin导入SQL文件的大小限制
pda158
sqlmysql
用phpMyAdmin导入mysql数据库时,我的10M的
数据库不能导入,提示mysql数据库最大只能导入2M。
phpMyAdmin数据库导入出错: You probably tried to upload too large file. Please refer to documentation for ways to workaround this limit.
- Tomcat性能调优方案
Sobfist
apachejvmtomcat应用服务器
一、操作系统调优
对于操作系统优化来说,是尽可能的增大可使用的内存容量、提高CPU的频率,保证文件系统的读写速率等。经过压力测试验证,在并发连接很多的情况下,CPU的处理能力越强,系统运行速度越快。。
【适用场景】 任何项目。
二、Java虚拟机调优
应该选择SUN的JVM,在满足项目需要的前提下,尽量选用版本较高的JVM,一般来说高版本产品在速度和效率上比低版本会有改进。
J
- SQLServer学习笔记
vipbooks
数据结构xml
1、create database school 创建数据库school
2、drop database school 删除数据库school
3、use school 连接到school数据库,使其成为当前数据库
4、create table class(classID int primary key identity not null)
创建一个名为class的表,其有一