Modeling and Energy Methods

Content

  1. Two Methods of Modeling
  • Force balance
  • Energy methods
  1. Energy Methods
  • Conservative system
  • Energy Conservation Method
  • Lagrange's Method
  1. Reference
  2. Log

Concepts

  • Modeling
  • Newton's 2nd Law
  • Euler's 2nd Law
  • Conservative system
  • Lagrange's Method

1. Two Methods of Modeling

如何得到系统的响应,我们需要建立系统的运动微分方程。在这个过程中,我们需要建模(Modeling)。

Modeling is the art or process of writing down an equation, or system of equations, to describe the motion of a physical device.[1]

Modeling and Energy Methods_第1张图片
01-modeling [1].JPG

这里,建模方法介绍两类:

  • Force balance: Newton's Second Law + Euler's 2nd Law
  • Energy methods

如上图中的弹簧质量系统,可通过Newton's Second Law (牛顿第二运动定律) 得到其运动微分方程。当然这个系统是 Conservative System

Newton's Second Law

Newton’s second law states: the sum of forces acting on a body is equal to the body’s
mass times its acceleration.[1]

即 F = ma.

在一些旋转系统中,可以使用 Euler's Second Law

Euler’s second law states: the rate of change of angular momentum is equal to the sum of external moments acting on the mass.[1]

即 ∑M = Jα. M为力矩, J 是转动惯量,α是角加速度。

在Free Vibration - 和 Harmonic Motion - 中基本就是使用 Force Balance 建模。

对于保守系统,我们还可以使用 Energy Methods.


2. Energy Methods

  • Energy Conservation Method
  • Lagrange's Method

Energy Conservation Method

Conservative System

保守系统: 系统动能和势能守恒,动能和势能相互转换,中间无能量消耗,当然这是最理想的系统,现实可没有这么理想,总是有能量损耗。不过先从简单,再到复杂,易于理解。

Energy Conservative System, 我们可以通过 Energy Conservation Method 建模。

** the principel of energy conservation**

the sum of the potential energy and kinetic energy of a particle remains constant at
each instant of time throughout the particle’s motion:

T + U = constant
U1 - U2 = T2 - T1
T_max = U_max

其他 T 是动能符号,U是势能符号。保守系统中,T 和 U 总能量守恒,系统没有能量损耗。 U1 和 T1 是 t1 时刻的势能和动能,U2 和 T2 是 t2 时刻的势能和动能.

The energy method can be used in two ways.

  1. 根据 T + U = constant,两边求 时间 t 求导 可以得到系统运动微分方程。
  2. 根据 T_max = U_max, 再利用系统 位移、速度和加速度的关系,就可以求解系统的Natural Frequency(固有频率)。这条路只限于求解保守系统固有频率。

Lagrange's Method

Lagrange’s method for conservative systems consists of defining the Lagrangian, L, of the system defined by L = T - U. Here T is the total kinetic energy of the system and U is the total potential energy in the system, both stated in terms of “generalized” coordinates.

哪里都能见到欧拉和拉格朗日啊!!!

拉格朗日方法其实也简单,就是使用一些方法来求系统的运动微分方程。不过该方法也只能用于保守系统中。

Modeling and Energy Methods_第2张图片
02-Lagrange method [1].JPG

最后列出一张表[1], 对比一下直线运动系统和旋转系统。

Modeling and Energy Methods_第3张图片
03-Comparisons [1].JPG

Reference

[1] Inman D J, Singh R C. Engineering vibration[M]. Upper Saddle River: Prentice Hall, 2014.


Log

@安然Anifacc
2017-01-07 11:30:42

你可能感兴趣的:(Modeling and Energy Methods)