- Transformer大模型实战 BART模型的架构
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Transformer大模型实战BART模型的架构作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming/TextGenWebUILLMTransformer大模型实战BART模型的架构1.背景介绍1.1问题的由来随着大规模预训练模型的兴起,如BERT、GPT系列等,研究人员发现基于Transformer架构的模型在自然语言处理任务上表现出了显著的优势。为
- 【大模型应用开发 动手做AI Agent】Agent的各种记忆机制
AI天才研究院
AI大模型企业级应用开发实战大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍AIAgent的核心特点是能够自主地与环境进行交互,以实现某种目标。为了实现这一目标,Agent需要对环境进行感知和理解,并对其进行探索和利用。对于Agent来说,记忆是实现这些功能的关键。Agent的记忆可以分为两类:短期记忆和长期记忆。短期记忆用于存储暂时性的信息,而长期记忆用于存储永久性的信息。以下是Agent的各种记忆机制的详细解释。2.核心概念与联系Agent的记忆机制可以分
- 吴恩达《提示词工程》(Prompt Engineering for Developers)课程详细笔记
拾工
人工智能prompt笔记人工智能
课程简介目标:帮助开发者理解如何有效地使用大语言模型(LLMs),提升通过提示词解决问题的能力。适用对象:开发者、AI从业者、产品经理等,希望通过提示词优化生成模型性能的人。第1章:提示词工程基础1.什么是提示词工程提示词工程是一种优化与大语言模型(如GPT)交互的技术,旨在通过设计有效的提示词(prompts)引导模型生成所需的输出。主要思想:用正确的方式提问以得到最佳答案。2.提示词的组成指令
- Python中的23种设计模式:详细分类与总结
拾工
Python设计模式软件设计设计模式
设计模式是解决特定问题的通用方法,分为创建型模式、结构型模式和行为型模式三大类。以下是对每种模式的详细介绍,包括其核心思想、应用场景和优缺点。一、创建型模式(CreationalPatterns)创建型模式关注对象的创建,旨在解耦对象的创建过程,提高灵活性和可扩展性。1.单例模式(Singleton)核心思想:确保一个类只有一个实例,并提供全局访问点。应用场景:数据库连接、配置管理器、日志记录器。
- Python批量为PDF添加水印:让你的文件瞬间高大上!
码无止尽
Python办公自动化pythonpdf
嗨,各位可爱的小伙伴们!小编在此奉上今天的超级干货:如何用Python给一大堆PDF文件添加水印。请放心,这不是在交朋友圈秀操作,而是有实际需求的哦!有时候我们需要在PDF文件上添加水印,比如“草稿”、“保密”、“审阅”等标识,来提醒自己或他人。今天就让我来教你如何用Python轻松搞定这件事!首先,让我给你看一下大致的实现思路,然后再附上实际代码。实现思路1、首先,我们需要一个PDF处理的Pyt
- 视频编码(结构、帧内预测、帧间预测)参考自公众号Video Coding
Techer_Y
音视频视频编解码h.265
编码结构H.265/HEVC(高效视频编码)提出了编码树单元CTU(CodingTreeUnit),CTU按四叉树方式向下划分成CU(CodingUnit)。VCC允许的最大CTU尺寸为128*128。H.265中,CU最大尺寸为64*64,最小尺寸为8*8。对平坦区域使用大尺寸CU,纹理复杂区域使用小尺寸CU可以大大提高编码效率。四叉树深度越大CU尺寸越小。多类型树划分:按照水平/垂直来进行二叉
- 开源生态发展合作倡议
操作系统
在信息技术发展的浪潮中,开源已成为全球创新的强劲引擎,深刻影响着各行各业的发展。今天,我们站在新的历史起点上,肩负着推动开源生态发展的重任。在此,开源欧拉(openEuler)、龙蜥(OpenAnolis)、鸥栖(OpenCloudOS)、开放麒麟(openKylin)、深度(deepin)五大操作系统开源社区携手并进,共同发起开源生态发展合作倡议,旨在书写开源生态繁荣的新篇章。在此,我们提出三点
- 【机器学习】使用scikit-learn中的KNN包实现对鸢尾花数据集或者自定义数据集的的预测
加德霍克
机器学习人工智能python学习作业
一、KNN算法概念K最近邻(K-NearestNeighbor,KNN)分类算法是数据挖掘分类技术中最简单的方法之一,是著名的模式识别统计学方法,在机器学习分类算法中占有相当大的地位。它是一个理论上比较成熟的方法。既是最简单的机器学习算法之一,也是基于实例的学习方法中最基本的,又是最好的文本分类算法之一。二、对鸢尾花数据集进行预测1、代码示例:fromsklearn.datasetsimportl
- 第84期 | GPTSecurity周报
aigc
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.利用数据流路径对大
- 从文字到思维:呆马GPT在人工智能领域的创新之旅
呆码科技
gpt人工智能
引言生成式预训练变换器(GenerativePre-trainedTransformer,简称GPT)领域是人工智能技术中的一大革新。自OpenAI推出第一代GPT以来,该技术经历了多代发展,不断提升模型的规模、复杂度和智能化程度。GPT模型通过在大规模数据集上进行预训练,学习语言的统计规律和世界知识,然后在特定任务上进行微调,以适应不同的应用需求。GPT领域的发展推动了自然语言处理(NLP)技术
- DeepSeek 公开新的模型权重
数据分析能量站
机器学习人工智能
DeepSeek-V3是一款开源大语言模型,在关键基准测试中超越了Llama3.1405B和GPT-4o,尤其在编码和数学任务中成绩优异。除特定受限应用(军事、伤害未成年人、生成虚假信息等)外,模型权重开源,可在线下载。工作原理混合专家架构(MoE):DeepSeek-V3是MoE型Transformer模型,有6710亿个参数,运行时370亿参数激活。相比Llama3.1405B,训练时间大幅缩
- 奇墨ITQM智能运维系统三大优势领航企业运维管理
奇墨 ITQM
运维云计算
企业对于IT运维管理的需求日益增长且愈发复杂,奇墨ITQM智能运维系统应运而生,以其独具的优势,为企业构建先进的智能运维和管理体系,从而实现企业云成本优化。.01自上而下的垂直管理理念在企业加速数字化转型的背景下,传统的“自下而上”的企业管理模式以无法满足企业管理的发展。奇墨ITQM智能运维系统采用了“自上而下”的垂直管理理念,实现从管理者到执行者的全面智能运维管理。奇墨ITQM智能运维系统赋予企
- 深度探索 DeepSeek-R1:国产大模型的AGI雏形与创新进展
微凉的衣柜
科技头条agi人工智能
随着人工智能技术的飞速发展,国内外企业纷纷发布了一系列创新的大模型,推动了AGI(通用人工智能)领域的探索。近期,DeepSeek-R1这一模型的发布引起了广泛关注,它不仅标志着国产大模型在智能化上的一次重大突破,还提出了全新的训练方法,解决了过去依赖大量人类数据的问题。本篇文章将详细介绍DeepSeek-R1的核心优势、技术创新以及实际应用案例,揭示它在AGI领域的潜力。1.DeepSeek-R
- 生数科技携手央视新闻《文博日历》,推动AI视频技术的创新应用
TMT星球
人工智能人工智能科技大数据
近日,生数科技携手央视新闻《文博日历》栏目,借助其旗下AI视频大模型及应用产品Vidu,共同打造AI版2025年文博日历联欢晚会,全面推动AI视频生成技术在媒体中的创新实践。《文博日历》是央视新闻客户端联合各大博物馆推出的文博科普产品,以新媒体形式为观众呈现丰富多彩的文博知识和历史文化。据「TMT星球」了解,此次合作中,生数科技为《文博日历》量身定制了AI视频生成方案,让文物们“动”起来,共同出演
- 天天AI-20250121:全面解读 AI 实践课程:动手学大模型(含PDF课件)
AI2AGI
天天AI人工智能大数据ai文心一言百度
2AGI.NET|探索AI无限潜力,2AGI为您带来最前沿资讯。2AGI.NET:天天AI-20250121从开源版o1模型的发布到Adobe推出音乐模型DITTO-2,再到OpenAI为研究长寿推出的GPT-4b,AI技术正以前所未有的速度和规模影响着我们的世界。本文将为您梳理近期的技术热点,带您一探究竟。全面解读AI实践课程:动手学大模型(含PDF课件)该教程内容较为专业,理解起来有一定难度,
- 基于Langchain框架,采用Qwen2.5大模型,搭建自己的Agent,ReACT效果比RAG好
张登杰踩
langchainpython人工智能语言模型
最近在做RAG,调研后发现ReACT好像更具有说服力,对最终结果的解释也更加合理。举个例子,我扔给大模型这样一个问题:15的平方是多少?另外,法国的首都是哪里?采用ReACT的运行结果如下:>EnteringnewAgentExecutorchain...我需要先计算15的平方,然后搜索法国的首都。Action:平方计算器ActionInput:"15"Observation:15的平方等于225
- Day05:C语言学习作业
老薛爱吃大西瓜
c语言学习算法开发语言
考虑到多重循环对程序效率的影响,以下哪种实现效率较高?为什么?(a)循环次数大的放在外层,循环次数小的放在内层;(b)循环次数小的放在外层,循环次数大的放在内层;答案:循环小的在外层效率高,因为CPU中会对循环次数进行缓存,当循环多后CPU需要进行多次缓存,减少效率请简述以下两个for循环的优缺点。(1)、for(i=0;i#defineN4voidmain(){inti;intx1=1,x2=2
- ARM下汇编语言编程
Kylin77626
arm开发
一、ARM汇编语言程序格式ARM汇编语言是以段(section)为单位来组织源文件的。段是相对独立的、具有特定名称的、不可分割的指令或者数据序列。段又可以分为代码段和数据段,代码段存放执行代码,数据段存放代码运行时需要用到的数据。一个ARM源程序至少需要一个代码段,大的程序可以包含多个代码段和数据段。二、ARM汇编语言中常用的伪操作例如:areareset,code,readonly;声明了一个名
- Open AI GPT大模型深度解析:通往智能的里程碑
xziyuan
人工智能gpt
大模型——OpenAIGPT大模型介绍人工智能技术的快速发展引发了对智能系统和应用的巨大需求。多模态大模型已经成为了人工智能领域的重要研究方向之一。OpenAI作为一家全球领先的人工智能公司,在推动人工智能技术的边界上发挥着重要作用,其在大模型方面的研究和应用也是一直处于领先地位。本文将介绍OpenAI多模态大模型的研究成果和应用,探讨其在人工智能领域的重要性和影响力,以及给世界带来的可能性。1.
- # AI计算模式 神经网络模型 深度神经网络 多层感知机 卷积神经网络 循环神经网络 长短期记忆网络 图像识别、语音识别、自然语言 轻量化模型和模型压缩 大模型分布式并行
EwenWanW
AGI人工智能神经网络dnn
AI计算模式AI技术发展至今,主流的模型是深度神经网络模型。近20年来,神经网络模型经过多样化的发展,模型总体变得越来越复杂和庞大,对硬件设备的计算速度、存储能力、通信速度的要求越来越高。尽管学者已经提出了许多方法优化模型结构,降低模型的参数量,但是伴随着人们对AI能力的要求越来越高,模型变得更大是不可避免的。原先单CPU可进行模型的训练与推理,如今需要使用GPU、TPU等设备,并通过分布式并行的
- LLaMA Pro是什么 相比于lora full freeze有什么区别 怎么使用
Ven%
简单说深度学习深度学习基础动手深度学习速通系列llamatransformer深度学习人工智能
1.LLaMAPro是什么?LLaMAPro是一种基于LLaMA架构改进的大型语言模型(LLM),旨在解决大模型微调中的知识遗忘问题。它通过在原有模型的基础上扩展新的模块(如Transformer块),并在微调时仅训练这些新增模块,从而在适应新任务的同时保留预训练模型的通用知识。LLaMAPro在代码理解、数学推理和语言理解等任务上表现出色,特别适合需要持续学习和多任务处理的场景。2.LLaMAP
- 【vLLM 学习】使用 OpenVINO 安装
vLLM是一款专为大语言模型推理加速而设计的框架,实现了KV缓存内存几乎零浪费,解决了内存管理瓶颈问题。更多vLLM中文文档及教程可访问→https://vllm.hyper.ai/由OpenVINO驱动的vLLM支持来自vLLM支持的模型列表中的所有LLM模型,并且可以在所有x86-64CPU上(至少需要AVX2支持)进行最佳的模型服务。OpenVINO的vLLM后端支持以下高级vLLM特性:前
- a16z:给新一届 SEC 的 6 大监管建议
安全智能合约web3
作者:Techub精选编译撰文:ScottWalker(a16z首席合规官)和BillHinman(前美SEC财务部主任)编译:Yangz,TechubNews随着技术的不断进步,美国证券交易委员会(SEC)也必须与时俱进,这一点在加密货币领域尤为明显。新的领导层以及新的加密货币特别工作组的成立,为该机构采取行动并及时做出调整提供了契机。如今,正是采取行动的关键时刻。加密货币市场的规模和复杂性正在
- 一镜到底、智能填充、悬停适配开发实践
harmonyos
课程简介本课程是【HarmonyOSTechTalk】的第30课。本课程将向开发者介绍HarmonyOS系统的强大开发能力,重点讲解三大核心特性:一镜到底、悬停适配、智能填充,帮助开发者更高效地构建优质的鸿蒙应用。课程旨在帮助开发者提升构建优质鸿蒙应用的能力,通过学习这些特性,开发者可以提升应用开发的灵活性和用户体验,从而开发更具创新性的跨平台应用。标签高级课程HarmonyOS一镜到底悬停智能填
- 快手可灵视频生成大模型全方位测评
人工智能llm
快手视频生成大模型“可灵”(Kling),是全球首个真正用户可用的视频生成大模型,自面世以来,凭借其无与伦比的视频生成效果,在全球范围内赢得了用户的热烈追捧与高度评价。截至目前,申请体验其内测版的用户数量已突破70万大关,累计生成的视频作品更是高达700万。可灵在持续创新的道路上也从未停下脚步,在七月份举办的世界人工智能大会(WAIC)期间,可灵再次迎来重大升级。新功能包括上线web端、基础模型效
- 五金行业MES生产管理系统有哪些优势?
在机械制造领域,五金零件加工和精密零件加工可是两大支柱。五金零件,顾名思义,就是那些用金属制成的各种部件,广泛应用于各种机械设备、电子产品、汽车等等。而精密零件加工则对加工精度和质量要求更高,通常出现在高端设备和仪器上。说到我国,那可是有不少企业专门从事五金零件和精密零件的加工定制。这些企业可以根据客户的需求,加工各种型号、规格和材质的零件。加工过程也是五花八门,包括车削、铣削、磨削、钻孔、攻丝等
- 每日论文推荐:我们距离GPT-4V有多远,最接近GPT-4V的开源多模态大模型
linxid
openopenaiGPT-5多模态大模型上海上海AI人工智能
元数据概览:标题:HowFarAreWetoGPT-4V?ClosingtheGaptoCommercialMultimodalModelswithOpen-SourceSuites作者:ZheChen,WeiyunWang,HaoTian,ShenglongYe,ZhangweiGao,ErfeiCui,WenwenTong,KongzhiHu,JiapengLuo,ZhengMa,JiMa,J
- 【趣学SQL】第四章:高级 SQL 功能 4.1 触发器与存储过程——数据库的“自动机器人“和“万能工具箱“
精通代码大仙
数据库sqloracle
第四章:高级SQL功能4.1触发器与存储过程——数据库的"自动机器人"和"万能工具箱"欢迎来到「数据库魔法工坊」!今天我们将化身"SQL巫师",用一家虚拟咖啡店的会员系统崩溃案例,教你如何用触发器和存储过程打造自动化的数据流水线。☕️4.1.1触发器的基本概念——当数据库学会"条件反射"真实惨案:某咖啡店因人工操作失误导致:VIP会员充值100元,积分却未到账新用户注册未分配默认优惠券凌晨3点订单
- 深度学习-94-大语言模型LLM之基于langchain的链Chain的基础应用和调用方式
皮皮冰燃
深度学习深度学习语言模型langchain
文章目录1Chain链的分类1.1LCELChains(链构造器)1.2LegacyChains(遗留链)2链的基础应用2.1OllamaLLM2.2是否使用chain的对比2.2.1不使用Chain2.2.2使用Chain3链的调用方式3.1通过invoke方法【推荐】3.2通过predict方法3.3通过apply方法3.4通过generate方法4参考附录1Chain链的分类为开发更复杂的应
- 原创提示词:中英法德四国翻译家
姚瑞南
prompt实战应用案例人工智能AIGC
本文原创作者:姚瑞南AI-agent大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)目录prompt应用效果:原文:英文(English):法文(Français):德文(Deutsch):prompt#Role:Local-DialectProficientEdi
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s