- 关于误差平面小记
文弱_书生
乱七八糟平面算法神经网络机器学习
四维曲面的二维切片:误差平面详解在深度学习优化过程中,我们通常研究损失函数(LossFunction)的变化,试图找到权重的最优配置。由于神经网络的参数空间通常是高维的,我们需要使用低维可视化的方法来理解优化过程和误差平面(ErrorSurface)。在这里,我们讨论一个四维曲面的二维切片,其中:三个维度是网络的权重(w1,w2,w3w_1,w_2,w_3w1,w2,w3)。第四个维度是误差(损失
- 关于重投影误差小记
文弱_书生
乱七八糟数码相机算法
重投影误差(ReprojectionError)讲解1.什么是重投影误差?在三维重建或相机标定过程中,我们希望将一个世界坐标系中的三维点投影到相机的图像平面上。理想情况下,该点的投影位置应该与实际图像中的观测点(如特征点)完全匹配,但由于噪声、相机模型的不准确性或优化算法的误差,这两个点可能会有偏差。重投影误差就是这个偏差的度量,即:e=∥pobserved−preprojected∥e=\|p_
- 旋转位置编码(Rotary Positional Encoding, RoPE):中文公式详解与代码实现
RockLiu@805
深度学习模块人工智能自然语言处理语言模型深度学习
旋转位置编码(RotaryPositionalEncoding,RoPE):中文公式详解与代码实现在序列模型中,位置信息对于任务的理解至关重要。传统的绝对和相对位置编码各有优缺点,而RoPE作为一种创新的位置编码方法,展现了其独特的优势。RoPE的核心思想RoPE通过旋转机制动态地捕捉位置信息。它允许查询(query)和键(key)向量的旋转程度根据它们之间的相对或绝对位置自动调整。这种方法使模型
- 股票交易之多策略协调规划
leo_厉锵
金融栏金融
前言:在股票交易领域,市场走势受宏观经济、行业竞争、公司基本面及投资者情绪等诸多因素影响,复杂多变。单纯依靠单一技术指标,如均线、MACD等做出买卖决策,犹如盲人摸象,易陷入片面判断,导致投资失误。因此,协调运用多种策略构建完善交易体系十分必要。以下为具体策略内容:一、止损与止盈的协同设置(一)止损点设定原则固定比例止损:单笔亏损不超本金5%,适用于短线及波动适中品种。动态调整止损:加仓后成本下降
- MySQL性能优化实战笔记 - 通俗易懂版
泥潭硬拔
mysql性能优化笔记
1.存储引擎选择-到底选哪个?InnoDBvsMyISAM通俗对比想象你开了一家银行:InnoDB就像是有保险柜的银行支持事务:比如转账,要么都成功,要么都失败行级锁:小明在存钱时,小红还能同时取钱缺点:需要更多内存和CPUMyISAM就像是简易储物柜不支持事务:操作简单直接表级锁:一个人在用时,其他人要等待优点:读取速度快,占用资源少2.实战案例:常见性能问题及解决方案案例1:查询特别慢--糟糕
- ALO蚁狮优化算法:从背景到实战的全面解析
der丸子吱吱吱
智能优化算法ALO算法
目录引言背景2.1蚁狮优化算法的起源2.2自然启发式算法的背景2.3ALO的发展与应用原理3.1蚁狮的生物行为3.2ALO的数学建模3.3算法流程与关键步骤实战应用4.1函数优化问题4.2工程优化案例4.3组合优化与约束优化代码实现与结果分析5.1Python代码实现5.2实验设计与结果分析5.3性能评估与优化建议学习资源6.1工具推荐6.2网站与文献资源6.3ALO与AI结合的方法结论1.引言在
- ToB产品运营
搞技术的季
产品运营
产品运营在大多数的运营者来说是面向C端的,B端的产品运营比较少,而且B端产品运营相对于C端来说,方式方法会少一些。主要包括:建立运营流程、产品培训、问题处理、产品优化。1.建立运营流程(1)签约流程客户签约要注意的事项包括签约时效和签约过程。签约的流程一定要根据公司的现状制定,切不可脱离实际。需要注意:·各环节的处理时效要求;·各环节的对接人事前要明确,做好沟通;(2)客服流程客服流程旨在建立售后
- 优化Apache Spark性能之JVM参数配置指南
weixin_30777913
jvmspark大数据开发语言性能优化
ApacheSpark运行在JVM之上,JVM的垃圾回收(GC)、内存管理以及堆外内存使用情况,会直接对Spark任务的执行效率产生影响。因此,合理配置JVM参数是优化Spark性能的关键步骤,以下将详细介绍优化策略和配置建议。通过以下优化方法,可以显著减少GC停顿时间、提升内存利用率,进而提高Spark作业吞吐量和数据处理效率。同时,要根据具体的工作负载和集群配置进行调整,并定期监控Spark应
- 中高级开发必看!MySQL 面试秘籍助你飞升
七七知享
数据库mysql面试数据库程序人生职场和发展学习方法github
中高级开发必看!MySQL面试秘籍助你飞升想要晋升中高级开发岗位?MySQL面试攻略来助力!这篇CSDN文章堪称你进阶路上的“秘密武器”,从基础概念到高阶优化,全方位覆盖MySQL面试要点,无论是索引原理、查询优化,还是事务处理、主从复制,都有深入解读,助你轻松应对面试官的各类难题,稳稳拿下心仪Offer,向着中高级开发岗位大步迈进!
- 第三十篇 维度建模:从理论到落地的企业级实践
随缘而动,随遇而安
数据库sql数据仓库大数据数据库架构
目录一、维度建模核心理论体系1.1Kimball方法论四大支柱1.2关键概念对比矩阵二、四步建模法全流程解析2.1选择业务过程(以电商为例)2.2声明原子粒度(订单案例)2.3维度设计规范时间维度(含财年逻辑)SCDType2完整实现(Hudi)2.4事实表类型与设计三、企业级建模实战:电商用户分析3.1业务矩阵分析3.2模型实现代码四、高级建模技巧4.1多星型模式关联4.2大数据场景优化五、性能
- TK矩阵系统:高效管理与智能化操作平台
m0_74891046
矩阵
随着TikTok等社交媒体平台的快速发展,短视频创作和内容运营逐渐成为互联网行业的重要组成部分。为了帮助内容创作者、品牌运营商以及数据分析人员更高效地管理多个TikTok账号并优化运营策略,TK矩阵系统提供了一种全新的解决方案,结合了先进的软件技术与硬件设施,旨在简化操作流程,提高工作效率。TK矩阵系统概述TK矩阵系统是一款集成软件与硬件的综合平台,专为TikTok内容管理和数据采集设计。系统使用
- 一、大语言模型微调 vs. 大语言模型应用
AI Echoes
深度学习人工智能deepseek机器学习算法
一、大语言模型微调vs.大语言模型应用1.微调(Fine-Tuning)的含义与特点定义与作用微调指在预训练好(通用)的基础模型上,通过在特定领域或任务的数据集上进一步训练来调整模型参数,使其在该领域任务中获得更优表现。这种方法可以使通用模型“定制化”,更好地理解专业术语和领域知识,从而提升准确性和响应质量。例如,为医疗、法律、金融等垂直领域构建专属模型,往往需要在预训练模型基础上进行微调。特点参
- Hive面试题
御风行云天
面试题大全hivehadoop数据仓库面试
Hive面试题1Hive基础概念1.1解释Hive是什么以及它的用途Hive的主要用途:1.2描述Hive架构和组件1.HiveCLI/Beeline和WebUI2.HiveQL3.HiveDriver(驱动)4.Metastore5.Compiler(编译器)6.Optimizer(优化器)7.Executor(执行器)8.HadoopCoreComponents(核心组件)9.HiveUDFs
- 说说你对Java里Integer缓存的理解?
java1234_小锋
javajava开发语言
大家好,我是锋哥。今天分享关于【说说你对Java里Integer缓存的理解?】面试题。希望对大家有帮助;说说你对Java里Integer缓存的理解?1000道互联网大厂Java工程师精选面试题-Java资源分享网Java中的Integer缓存是为了提高性能而引入的优化机制,特别是对于频繁使用的小范围整数的情况。具体来说,Integer类对从-128到127范围内的整数值做了缓存。这些整数值被缓存起
- 编程语言选择分析:C#、Rust、Go 与 TypeScript 编译器优化
互联网搬砖老肖
工具使用原力计划c#rustgolang
编程语言选择分析:C#、Rust、Go与TypeScript编译器优化在讨论编程语言的选择时,特别是针对微软的C#和Rust,以及谷歌的Go语言,以及微软试图通过Go来拯救TypeScript编译器的问题,我们可以从多个角度来分析和理解。首先,我们来逐一分析这些语言的特点和它们各自的应用场景。1.C#C#是微软开发的一种面向对象的编程语言,它是.NET框架的核心部分。C#广泛用于Windows应用
- AI界劳斯莱斯o1 -Pro来了!百万token收费600刀,OpenAI在AI普惠反方向狂奔?
算家计算
话题文章人工智能算家云OpenAIo1-proAPIOpenAI发布最贵模型DeepSeek
刚刚,OpenAI宣布推出其最新的高性能推理模型o1-pro。当大家还在为GPT-4.5的订阅费感到肉痛时,OpenAI用一记价格暴击刷新了认知——全新推理模型o1-pro的API定价,输入每百万token收费150美元,输出每百万token收费600美元,比前代模型贵了10倍,更是将DeepSeek-R1甩出270倍价差。与OpenAI其他模型相比,o1-pro的价格高出了不止一点:目前o1-p
- LeetCode热题100JS(59/100)第十一天|46|78|17|39|22
Alicesflower
LeetCode热题100JSleetcodejavascript算法
46.全排列题目链接:46.全排列难度:中等刷题状态:2刷新知识:解题过程思考示例1:输入:nums=[1,2,3]输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]题解分析参考题解链接:全排列放下1刷过程/***@param{number[]}nums*@return{number[][]}*///varpermute=function(num
- 生成式对抗网络在人工智能艺术创作中的应用与创新研究
辛迎蕌
人工智能
摘要本文深入探究生成式对抗网络(GAN)在人工智能艺术创作领域的应用与创新。通过剖析GAN核心原理,阐述其在图像、音乐、文学等艺术创作中的实践,分析面临的挑战与创新方向,呈现GAN对艺术创作模式的变革,为理解人工智能与艺术融合发展提供全面视角。一、引言在人工智能与艺术深度融合的时代浪潮中,生成式对抗网络(GAN)作为一项突破性技术,为艺术创作带来了全新的可能性。它打破传统创作边界,以独特的对抗学习
- 【Kafka高级】Kafka性能优化与调优实践
全栈追梦人
kafka性能优化linq
在大规模数据处理和实时消息传递场景中,Kafka的性能优化至关重要。本文将从生产者性能优化、消费者性能优化以及集群性能调优三个方面展开,结合实际代码示例和配置参数,帮助读者更好地理解和应用Kafka性能优化策略。一、生产者性能优化Kafka生产者的性能直接影响消息发送的效率和系统的吞吐量。以下是一些关键优化策略:1.1批量发送生产者会将消息批量发送到Kafka,减少网络请求次数。以下参数对批量发送
- 稳定运行的以PostgreSQL数据库为数据源和目标的ETL性能变差时提高性能方法和步骤
weixin_30777913
postgresql开发语言数据库性能优化etl
在使用PostgreSQL作为数据源和目标的ETL(Extract,Transform,Load)过程中,当ETL性能变差时,可以通过一系列方法来诊断问题并提高性能。提高PostgreSQL数据库ETL性能的核心思想是从数据库配置、查询优化、硬件资源、并行处理等多个方面入手。通过上述方法逐步优化,可以大幅提升ETL过程的效率。下面是提高PostgreSQL数据库ETL性能的一些常用方法和步骤:1.
- 使用Nginx实现后端负载均衡
海上彼尚
node.jsnginx负载均衡运维node.js
目录引言一、负载均衡的核心作用二、基础配置三步曲1.定义后端服务器组(upstream)2.配置代理转发规则3.重载配置生效三、六大负载均衡算法详解四、高级配置技巧1.健康检查机制2.会话保持方案3.SSL终止优化五、实战场景配置案例案例1:WebSocket负载均衡案例2:多级地域分发案例3:连接池优化六、最佳实践与陷阱规避结语引言在现代高并发场景下,单一服务器难以支撑海量请求的处理。Nginx
- ollama 基本使用教程
海上彼尚
AIai前端
目录1.安装OllamamacOS或LinuxWindows(WSL2)2.基础命令启动与停止更新Ollama3.模型管理下载预训练模型运行模型查看已安装模型删除模型从Modelfile创建自定义模型4.高级功能服务器模式与API多会话管理环境变量配置5.常见问题与技巧加速模型下载查看日志模型参数调整模型导出与分享Ollama是一个开源的大型语言模型服务工具,能够帮助用户在本地运行大模型。通过简单
- AI人工智能 Agent:在赋能传统行业中的应用
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能Agent:在赋能传统行业中的应用1.背景介绍1.1人工智能的发展历程1.1.1人工智能的起源与发展1.1.2人工智能的三次浪潮1.1.3人工智能的现状与挑战1.2传统行业面临的困境1.2.1效率低下1.2.2成本高企1.2.3决策滞后1.3人工智能赋能传统行业的必要性1.3.1提高效率1.3.2降低成本1.3.3优化决策2.核心概念与联系2.1人工智能Agent的定义2.1.1Age
- 一文弄懂Python 变量初始化与内存管理
宇寒风暖
python编程python开发语言笔记学习
在Python中,变量的初始化并不一定会开辟新的内存空间。Python的内存管理机制非常灵活,它会根据变量的值、类型以及Python的内部优化策略来决定是否复用已有的内存空间。1.变量初始化的基本概念在Python中,变量是对象的引用。当你初始化一个变量时,Python会执行以下操作:创建一个对象(如果该对象不存在)。将变量名绑定到该对象。例如:a=10b="hello"a是一个整数对象的引用。b
- BRAM消耗与FIFO的关系:有效利用FPGA资源的策略
kanhao100
HLSfpga开发
BRAM消耗与FIFO的关系:有效利用FPGA资源的策略引言在FPGA设计中,BRAM(BlockRAM)是用于存储数据的重要资源。有效管理和利用BRAM对于实现高性能数字系统至关重要。特别是对于需要频繁读写数据的应用,FIFO(先进先出)缓冲区的使用与BRAM的消耗之间存在着密切的关系。本文将探讨BRAM的消耗、FIFO的特性,以及如何正确利用BRAM以优化设计效率。1.BRAM的基本概念1.1
- GreatSQL 为何选择全表扫描而不选索引
数据库mysql
GreatSQL为何选择全表扫描而不选索引1.问题背景在生产环境中,发现某些查询即使有索引,也没有使用索引,反而选择了全表扫描。这种现象的根本原因在于优化器评估索引扫描的成本时,认为使用索引的成本高于全表扫描。2.场景复现2.1环境信息机器IP:192.168.137.120GreatSQL版本:8.0.32-262.2环境准备通过脚本创建了一个包含100万条数据的表,并在age列上创建了索引id
- SM系列密码算法在网络空间安全中的体系化应用研究
安全
一、算法架构与技术特性解析1.1SM2椭圆曲线公钥算法基于Fp-256r1椭圆曲线构建,采用Weierstrass方程形式:y²≡x³+ax+b(modp),其核心安全参数满足:素数模p:256位大素数基域Fp上椭圆曲线阶n满足n>2^191抗MOV约化攻击特性支持高效标量乘运算优化密钥协商协议采用改进的ECMQV机制,通过两步验证实现前向安全性,计算流程包含:临时密钥对生成:(d_A,P_A)←
- 基于Matlab_simulink仿真相关 控制算法、优化算法相关帮助代做,原理讲解
985计算机硕士
仿真模型matlab算法开发语言
Matlab/simulink仿真相关控制算法、优化算法相关帮助代做,原理讲解:1.优化算法相关:蚁群优化算法,遗传优化算法等2.控制器相关:ADRC控制,鲁棒控制,神经网络控制,MPC等3.神经网络相关:BP神经网络,RBF神经网络,LSTM神经网络等文章目录1.优化算法相关蚁群优化算法(ACO)2.控制器相关ADRC控制3.神经网络相关BP神经网络1.构建光伏系统模型1.1光伏电池模型1.2控
- Marker可以快速且准确地将PDF转换为markdown格式。
星霜笔记
开源关注简介免费源码pdf
MarkerMarker可以快速且准确地将PDF转换为markdown格式。支持多种文档类型(针对书籍和科学论文进行了优化)支持所有语言移除页眉/页脚/其他杂质格式化表格和代码块提取并保存图像以及markdown将大多数方程转换为latex支持在GPU、CPU或MPS上运行工作原理Marker是一个由深度学习模型组成的管道:提取文本,必要时进行OCR处理(启发式算法,surya,tesseract
- 重建容器操作:对基于 docker-compose-project.yaml 配置文件的容器进行重启和更新操作
momopeng~
docker容器运维
先停止当前运行的容器,然后删除这些停止的容器,最后重新创建并启动容器。需重建容器但配置不变的具体步骤:(1)修改调整docker-compose-project.yaml文件后保存(2)查看配置文件的容器运行状态:快速查看由docker-compose-project.yaml文件定义的所有容器的运行状态docker-compose-fdocker-compose-project.yamlps(3
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓