- 【图像处理基石】如何入门大规模三维重建?
小米玄戒Andrew
图像处理基石深度学习人工智能三维重建大规模三维重建立体视觉大模型LLM
入门大规模三维重建需要从基础理论、核心技术到实践工具逐步深入,同时需关注该领域的经典工作和前沿进展。以下是分阶段的入门路径及值得重点学习的工作:一、基础理论与前置知识大规模三维重建的核心是从海量图像或传感器数据中恢复场景的三维结构,涉及计算机视觉、摄影测量、图形学、最优化等多个领域,需先掌握以下基础:数学基础线性代数:矩阵运算、特征值分解(用于相机姿态估计)、奇异值分解(SVD,用于基础矩阵求解)
- 前沿交叉:Fluent与深度学习驱动的流体力学计算体系
m0_75133639
流体力学深度学习人工智能航空航天fluent流体力学材料科学CFD
基础模块流体力学方程求解1、不可压缩N-S方程数值解法(有限差分/有限元/伪谱法)·Fluent工业级应用:稳态/瞬态流、两相流仿真(圆柱绕流、入水问题)·Tecplot流场可视化与数据导出2、CFD数据的AI预处理·基于PCA/SVD的流场数据降维·特征值分解与时空特征提取深度学习核心3.物理机理嵌入的神经网络架构·物理信息神经网络(PINN):将N-S方程嵌入损失函数(JAX框架实现)·神经常
- Python 用 NumPy 进行矩阵分解
Python用NumPy进行矩阵分解关键词:NumPy,矩阵分解,线性代数,奇异值分解,QR分解,LU分解,特征值分解摘要:本文将深入探讨使用NumPy进行矩阵分解的各种技术。我们将从基础的线性代数概念出发,详细讲解五种核心矩阵分解方法:LU分解、QR分解、奇异值分解(SVD)、特征值分解和Cholesky分解。每种方法都将配有数学原理说明、NumPy实现代码和实际应用案例。文章还将介绍矩阵分解在
- LSA主题模型:基于奇异值分解的主题模型
AI天才研究院
AI人工智能与大数据AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LSA主题模型:基于奇异值分解的主题模型1.背景介绍主题模型是一种无监督的机器学习技术,用于发现大规模文本语料库中隐藏的语义结构。它能够自动识别文档集合中的主题,并根据这些主题对文档进行聚类和分类。主题模型在文本挖掘、信息检索、推荐系统等领域有着广泛的应用。LSA(LatentSemanticAnalysis)是一种经典的主题模型算法,基于奇异值分解(SVD)对词-文档矩阵进行分解,从而揭示词语和
- 60天python训练营打卡day20
tan90�=
python60天打卡python开发语言
学习目标:60天python训练营打卡学习内容:DAY20奇异值SVD分解奇异值分解这个理论,对于你未来无论是做图像处理、信号处理、特征提取、推荐系统等都非常重要,所以需要单独抽出来说一下这个思想。—甚至我在非常多文章中都看到单独用它来做特征提取(伪造的很高大上),学会这个思想并不复杂没学过线代的不必在意,推导可以不掌握,关注输入输出即可。今天这期有点类似于帮助大家形成闭环—考研数学不是白考的知识
- Python 训练营打卡 Day 20-奇异值SVD分解
帮关下月亮
python训练营python算法开发语言
一.奇异值分解(SVD)的输入和输出输入:一个任意的矩阵A,尺寸为m×n(其中m是行数,n是列数,可以是矩形矩阵,不必是方阵)奇异值分解(SVD)得到的三个矩阵U、Σ和V^T各有其特定的意义和用途,下面我简要说明它们的作用:U(奇异值向量矩阵):是一个m×m的正交矩阵,列向量是矩阵AA^T的特征向量作用:表示原始矩阵A在行空间(样本空间)中的主方向或基向量。简单来说,U$的列向量描述了数据在行维度
- 疏锦行Python打卡 DAY 20 奇异值SVD分解
橘子夏与单车少年k
Python60天打卡训练营pythonnumpy开发语言
importnumpyasnp#创建一个矩阵A(5x3)A=np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15]])print("原始矩阵A:")print(A)#进行SVD分解U,sigma,Vt=np.linalg.svd(A,full_matrices=False)print("\n奇异值sigma:")print(sigma)#保留
- Python打卡训练营day20-奇异值SVD分解
sak77
python打卡训练营python机器学习奇异值分解SVD
知识点回顾:线性代数概念回顾(可不掌握)奇异值推导(可不掌握)奇异值的应用特征降维:对高维数据减小计算量、可视化数据重构:比如重构信号、重构图像(可以实现有损压缩,k越小压缩率越高,但图像质量损失越大)降噪:通常噪声对应较小的奇异值。通过丢弃这些小奇异值并重构矩阵,可以达到一定程度的降噪效果。推荐系统:在协同过滤算法中,用户-物品评分矩阵通常是稀疏且高维的。SVD(或其变种如FunkSVD,SVD
- MATLAB实现的基于SVD的数字图像水印技术
张锦云
本文还有配套的精品资源,点击获取简介:在数字图像处理中,SVD水印技术是一种有效的版权保护方法。它利用SVD算法在MATLAB环境下嵌入和提取水印,确保图像质量的同时隐藏信息。本文介绍了在MATLAB中实现SVD水印的步骤,包括图像预处理、SVD分解、水印嵌入、图像重构、水印提取和代码注释等关键环节。实践中涉及的技术点包括图像处理、SVD函数使用、数据编码策略、数值稳定性和图像质量评估。1.数字图
- AI推荐系统演进史:从协同过滤到图神经网络与强化学习的融合
万米商云
人工智能神经网络深度学习
每一次滑动手机屏幕,电商平台向你推荐心仪商品的背后,是超过百亿量级的浮点运算。从早期的“猜你喜欢”到如今的“比你更懂你”,商品推荐引擎已悄然完成从简单规则到深度智能的技术跃迁。一、协同过滤:推荐系统的基石与演进协同过滤(CollaborativeFiltering)作为推荐系统的“古典方法”,其核心思想朴素却有力:相似的人喜欢相似的东西。早期的矩阵分解技术(如2009年的SVD算法)将用户-物品交
- 矩阵分解相关知识点总结(四)
嵙杰
数学基础矩阵分解特征值SVD分解
文章目录四、矩阵的满秩分解五、矩阵的奇异值分解书接上上文矩阵分解相关知识点总结(二)四、矩阵的满秩分解 设A∈Crm×n(r>0)A\inC_r^{m\timesn}(r>0)A∈Crm×n(r>0),存在矩阵F∈Crm×rF\inC_r^{m\timesr}F∈Crm×r和G∈Crr×nG\inC_r^{r\timesn}G∈Crr×n,使得A=FG(7)\color{#F00}A=FG\ta
- 矩阵的奇异值(Singular Values)
幼儿园大哥~
扩展知识矩阵算法线性代数
矩阵的奇异值(SingularValues)是奇异值分解(SVD)过程中得到的一组重要特征值。它们在许多应用中非常重要,如信号处理、数据压缩和统计学等。以下是对奇异值及其计算和性质的详细解释:奇异值分解(SVD)奇异值分解是矩阵分解的一种方法,它将任意一个实数或复数矩阵分解为三个特定矩阵的乘积。具体来说,对于一个m×nm\timesnm×n的矩阵M\mathbf{M}M,其奇异值分解表示为:M=U
- 矩阵特征值和奇异值之间的关系
hxyzs
矩阵机器学习线性代数
矩阵的特征值和奇异值是线性代数中重要的概念,它们之间存在一定的关系。对于一个方阵,其特征值是该矩阵在空间中的特殊向量方向上的缩放因子。特征值可以通过解矩阵的特征值问题得到,即找到满足方程Ax=λx的非零向量x和标量λ。而对于一个非方阵的矩阵,它的奇异值则是矩阵的秩和特征向量的相对缩放因子。奇异值分解(SVD)可以将矩阵分解为三个部分:U、Σ和V^T,其中U和V是正交矩阵,Σ是一个对角矩阵,对角线上
- cortex-debug怎么提取添加.svd文件进行外设查看
c++小白,瞎写博客
vscode单片机
找到厂家提供的keil的pack包,改后缀成zip以压缩文件打开,把svd文件移出来,添加"svdFile"项
- 共现矩阵的SVD降维与低维词向量计算详解
幽·
NLP与机器学习矩阵线性代数
共现矩阵的SVD降维与低维词向量计算详解1.原始共现矩阵构建根据用户提供的共现对:句子1:(I,like),(like,apples)句子2:(I,like),(like,bananas)词汇表:[I,like,apples,bananas]窗口大小=2(假设共现对直接作为矩阵的非零元素),共现矩阵(M)如下(忽略单词自身的共现,即对角线为0):IlikeapplesbananasI0200lik
- 深入详解矩阵分解(SVD在推荐系统中的应用)
猿享天开
人工智能数学基础专讲矩阵线性代数
深入详解矩阵分解(SVD在推荐系统中的应用)矩阵分解是数据科学、机器学习和人工智能中的核心技术之一,尤其在推荐系统中展现出强大的应用潜力。本文将从基础数学概念开始,逐步深入到奇异值分解(SVD)的理论、计算过程、在推荐系统中的具体应用,并扩展到矩阵分解在人工智能其他领域的应用。通过详细的解释和具体的实例,帮助初学者全面掌握和理解矩阵分解的原理和应用。一、矩阵基础知识1.1什么是矩阵?矩阵是一个按照
- Diffusers代码学习:Stable Video Diffusion
duhaining1976
AIGC
稳定视频扩散(SVD)是一种强大的图像到视频生成模型,可以根据输入图像生成2-4秒的高分辨率(576x1024)视频。有此模型的两个变体,SVD和SVD-XT。SVDCheckpoint被训练以生成14帧视频,并且SVD-XTCheckpoint点被进一步微调以生成25帧视频。下面将在本指南中使用SVD-XTCheckpoint。importosos.environ["HF_ENDPOINT"]=
- 深入详解线性代数基础知识:理解矩阵与向量运算、特征值与特征向量,以及矩阵分解方法(如奇异值分解SVD和主成分分析PCA)在人工智能中的应用
猿享天开
人工智能数学基础专讲线性代数人工智能矩阵特征向量
深入详解线性代数基础知识在人工智能中的应用线性代数是人工智能,尤其是机器学习和深度学习领域的基石。深入理解矩阵与向量运算、特征值与特征向量,以及矩阵分解方法(如奇异值分解SVD和主成分分析PCA),对于数据降维、特征提取和模型优化至关重要。本文将详细探讨这些线性代数的核心概念及其在人工智能中的应用,并辅以示例代码以助理解。1.矩阵与向量运算线性代数中的矩阵与向量运算是理解高维数据处理和模型训练的基
- 如何深入学习MATLAB的高级应用?
tyatyatya
MATLAB教程学习matlab开发语言
文章目录要深入学习MATLAB的高级应用,需要在掌握基础语法后,系统性地学习特定领域的工具箱和算法,并通过实战项目提升能力。以下是分阶段的学习路径和资源推荐:一、深化核心技能高级矩阵运算与线性代数matlab%稀疏矩阵处理A=sparse([100;020;003]);%创建稀疏矩阵spy(A);%可视化稀疏结构%特征值分解与SVD[V,D]=eig(A);%特征值分解[U,S,V]=svd(A)
- 【图像处理基石】如何入门AI计算机视觉?
AndrewHZ
图像处理基石人工智能图像处理计算机视觉深度学习AIPyTorch
入门AI计算机视觉需要从基础理论、工具方法和实战项目三个维度逐步推进,以下是系统化的学习路径和建议:一、夯实基础:核心知识储备1.数学基础(必备)线性代数:矩阵运算、特征值分解、奇异值分解(SVD)——理解神经网络中的线性变换。概率论与统计:概率分布、贝叶斯定理、假设检验——支撑模型训练中的不确定性分析。微积分:导数、梯度、链式法则——深度学习优化(如反向传播)的核心。推荐资源:教材:《线性代数及
- 技术剖析|线性代数之特征值分解,支撑AI算法的数学原理
AI算力那些事儿
技术剖析线性代数人工智能算法
目录一、特征值分解的数学本质1、基本定义与核心方程2、几何解释与线性变换3、可对角化条件与分解形式二、特征值分解的计算方法1、特征多项式与代数解法2、数值计算方法3、计算实例与验证三、特征值分解在AI中的关键应用1、主成分分析(PCA)与数据降维2、图分析与网络科学3、矩阵分析与优化问题4、图像处理与信号分析四、特征值分解的扩展与相关技术1、奇异值分解(SVD)的关联2、广义特征值问题3、现代算法
- day 20
lcccyyy1
60天计划python
利用SVD奇异值分解进行降维奇异值分解(SVD)将原始矩阵A分解为A=UΣVᵀ,可完全重构A且无信息损失。实际应用中,常筛选排序靠前的奇异值及对应向量实现降维或数据压缩:1.排序特性:Σ矩阵对角线上奇异值降序排列,大值代表主要信息,小值代表次要信息或噪声,其大小反映对A的贡献程度。2.筛选规则:选前k个奇异值(k小于矩阵秩),常见规则有固定数量、累计方差贡献率达阈值、按奇异值下降“拐点”截断。3.
- SVD奇异值分解
zx43
python训练营打卡内容机器学习人工智能python笔记
知识点回顾:线性代数概念回顾(可不掌握)奇异值推导(可不掌握)奇异值的应用特征降维:对高维数据减小计算量、可视化数据重构:比如重构信号、重构图像(可以实现有损压缩,k越小压缩率越高,但图像质量损失越大)降噪:通常噪声对应较小的奇异值。通过丢弃这些小奇异值并重构矩阵,可以达到一定程度的降噪效果。推荐系统:在协同过滤算法中,用户-物品评分矩阵通常是稀疏且高维的。SVD(或其变种如FunkSVD,SVD
- 2024 AI 人工智能完整学习路线表
AI天才研究院
人工智能学习
十六大阶段概述阶段阶段名称实战项目收益第一阶段python基础与科学计算模块√泰坦尼克号数据分析案例√可视化剖析逻辑回归损失函数案例算法先行,技术随后。学习人工智能领域基础知识熟练掌握,打好坚实的内功基础。第二阶段AI数学知识√梯度下降和牛顿法推导√SVD奇异值分解应用第三阶段线性回归算法√代码实现梯度下降求解多元线性回归√保险花销预测案例第四阶段线性分类算法√分类鸢尾花数据集√音乐曲风分类√SV
- SVD求解两个点集之间的刚体运动,即旋转矩阵和平移向量。
咆哮的阿杰
机器学习Python矩阵算法线性代数
问题描述给出两个点集A和B,求解点集之间的刚体变化,包含scale,rotation,translate。使其A经过变换之后,可以和B在空间上对齐。原理SVD可以用于求解上述问题。假设有A点集A∈Rn×3A\inR^{n\times3}A∈Rn×3,B点集B∈Rn×3B\inR^{n\times3}B∈Rn×3,优化的目标是:argminR,t ∣∣R×A+T−B∣∣\underset{R,t}{
- 文本主题模型之潜在语义索引(LSI)
多尝试多记录多积累
好文章的搬运工:https://www.cnblogs.com/pinard/p/6805861.html先对矩阵做SVD分解,然后利用V矩阵,计算LSI,LSI得到的文本主题矩阵可以用于文本相似度计算。而计算方法一般是通过余弦相似度。需要选取主题的k值。LSI是最早出现的主题模型了,它的算法原理很简单,一次奇异值分解就可以得到主题模型,同时解决词义的问题,非常漂亮。但是LSI有很多不足,导致它在
- 【arXiv 2024】HiFiVFS: High Fidelity Video Face Swapping
旋转的油纸伞
人脸相关前沿研究从入门到实战计算机视觉人工智能职场和发展算法机器学习
【arXiv2024】HiFiVFS:HighFidelityVideoFaceSwapping一、前言文章核心观点Abstract文章的背景,动机思路,主要的贡献点分别是什么?详细介绍文章实现的整个过程,包括具体的细节。本文相对于SVD做出的改进有哪些?详细地介绍Fine-grainedAttributesLearning的整个流程。详细地介绍DetailedIdentityLearning的整
- C++手动实现奇异值分解(SVD)算法:从理论到代码实践
xMathematics
c++算法开发语言
C++手动实现奇异值分解(SVD)算法:从理论到代码实践项目背景与SVD核心概念在矩阵分解的广阔领域中,奇异值分解(SVD)宛如一颗璀璨的明星,占据着核心地位。它是一种强大且通用的矩阵分解技术,能够将任意矩阵分解为特定形式,为众多领域的问题解决提供了有力工具。手动实现SVD具有不可忽视的价值,它能让我们深入理解算法的底层逻辑,而不仅仅是停留在调用库函数的表面应用。矩阵分解的基本形式是将一个矩阵分解
- 【技巧】chol分解时,矩阵非正定时的临时补救措施,以MATLAB为例
MATLAB卡尔曼
MATLAB技巧矩阵matlab线性代数
针对非正定矩阵无法进行标准Cholesky分解的解决方案及MATLAB代码实现,结合不同应用场景的需求分层解析文章目录数值修正方法修正Cholesky分解LDL分解矩阵变换与重构特征值修正乘积法构造正定矩阵替代分解与降维方法QR分解与SVD主成分分析(PCA)应用场景与选择建议MATLAB实用工具与验证数值修正方法修正Cholesky分解通过添加微小正数到对角线元素,强制矩阵正定:function
- Open3D(C++) 四元数奇异值分解
点云侠
Open3D学习c++矩阵开发语言3d计算机视觉线性代数
目录一、算法原理1、原理概述2、实现过程3、参考文献二、代码实现三、结果展示本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫。一、算法原理1、原理概述 四元数矩阵的奇异值分解是将一个四元数矩阵分解成三个部分的乘积,即:Q=UΣV
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不