传送门
题意:
给出一颗\(n\)个结点的树,对于每个结点输出其答案,每个结点的答案为\(ans_x=\sum_{i=1}^ndis(x,i)^k\)。
思路:
我们对于每个结点将其答案展开:
\[ \begin{aligned} ans_x=&\sum_{i=0}^{n}\sum_{j=0}^k{dis(x,i)\choose j}j!\begin{Bmatrix} k \\ j \end{Bmatrix}\\ =&\sum_{j=0}^kj!\begin{Bmatrix} k \\ j \end{Bmatrix}\sum_{i=0}^n{dis(x,i)\choose j} \end{aligned} \]
现在就考虑如何快速求\(\displaystyle \sum_{i=0}^n{dis(x,i)\choose j}\)。
因为组合数可以展开,所以我们可以写成:
\[ \sum_{i=0}^n{dis(x,i)-1\choose j-1}+{dis(x,i)-1\choose j} \]
如果\(x\)为根节点的话,那么答案很好求,我们只需要对每个点求出其子树的答案。我们记\(f[i][j]\)为以\(i\)为根的子树中,\(\displaystyle \sum_{k=0}^n{dis(k,i)\choose j}\)的答案。那么每个结点更新答案时由其儿子结点转移过来即可。
最后再换下根即可求出以所有结点为根结点的答案,当\(u\)向\(v\)转移时,要减去\(v\)结点的贡献才能得出以\(u\)为根节点的子树的值。
细节见代码:
/*
* Author: heyuhhh
* Created Time: 2019/12/14 14:56:05
*/
#include
#include
#include
#include
#include
#include
#include
#include