- AI 大模型应用数据中心的数据分析架构
AI天才研究院
计算AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《AI大模型应用数据中心的数据分析架构》关键词:数据中心、AI大模型、数据分析、架构设计、应用实践摘要:本文深入探讨了AI大模型在数据中心数据分析架构中的应用,从数据中心背景、AI大模型架构与技术、数据处理与分析技术、AI大模型应用与实践等多个方面,全面解析了AI大模型如何助力数据中心实现高效数据分析和智能处理,为读者提供了系统的理论指导和实际案例分析。第一部分:数据中心背景与AI大模型概述第1章
- 入门到入土,Java学习 day17(Lambda表达式,集合进阶)
慕容魏
java学习python
publicstaticStringtoString(数组)把数组拼接成一个字符串publicstaticintbinarySearch(数组,查找的元素)二分查找法找元素publicstaticint[]copyOf(原数组,新数组长度)拷贝数组长度小就拷贝几个,长度一样完全拷贝,长度大后面补默认值publicstaticint[]copyOfRange(原数组,起始索引,结束索引)拷贝数组(指
- 人工智能概念
zhangpeng455547940
计算机人工智能
机器学习、深度学习、大模型机器学习提供框架,使得系统可以从数据中学习算法:线性回归、逻辑回归、支持向量机、决策树、随机森林、K近邻算法深度学习是实现这一目标的工具,模仿人脑,使用多层神经网络进行学习算法:多层感知器、卷积神经网络、循环神经网络、长短期记忆网络大模型指参数量巨大的深度学习模型人工智能应用:自然语言处理、图像识别与生成、语音识别、政务与企业服务...
- HR SaaS平台排行榜:细数2025年中国最具商业价值的十大HR SaaS平台
weixin_54980836
大数据人工智能
在当今竞争激烈且瞬息万变的商业环境中,企业数字化转型已不再是可选项,而是生存与发展的必经之路。人力资源管理作为企业运营的核心支柱之一,正经历着前所未有的深刻变革。传统的HR管理模式已逐渐暴露出效率低下、数据整合困难、决策支持不足等问题,难以满足现代企业对精准、高效、智能人力资源管理的需求。在此背景下,HRSaaS系统应运而生,成为企业优化薪酬管理、提升人力资源效率、实现数字化转型的关键工具。本文将
- 为什么Redis对大 Key(Large Key)和大对象不友好?怎样优化?
风一样的树懒
redis数据库缓存
你好,我是风一样的树懒,一个工作十多年的后端专家,曾就职京东、阿里等多家互联网头部企业。公众号“吴计可师”,已经更新了近百篇高质量的面试相关文章,喜欢的朋友欢迎关注点赞Redis对大Key(LargeKey)和大对象不友好,主要源于其内存管理模型、单线程架构和数据结构特性。以下从性能影响、内存管理、集群限制三个维度解析原因,并提供优化方案:一、Redis对大Key不友好的核心原因1.性能瓶颈单线程
- 国家地理信息公共服务平台的天地图
gys9895
百度地图js
文章目录一、国家地理信息公共服务平台的天地图二、地图转换1.GIS数据格式坐标转换(地球坐标WGS84、GCJ-02、火星坐标、百度坐标BD-09、国家大地坐标系CGCS2000)2.读入数据总结一、国家地理信息公共服务平台的天地图三大地图付费后,仍可用的免费商用地图APIFailedtoresolveloader:sass-loader如果是本地测试,那么对应的白名单设置为null第一步,在Vu
- 院士领衔、IEEE Fellow 坐镇,清华、上交大、复旦、同济等专家齐聚 2025 全球机器学习技术大会
CSDN资讯
机器学习人工智能
随着Manus出圈,OpenManus、OWL迅速开源,OpenAI推出智能体开发工具,全球AI生态正经历新一轮智能体革命。大模型如何协同学习?大模型如何自我进化?新型强化学习技术如何赋能智能体?围绕这些关键问题,由CSDN&Boolan联合举办的「2025全球机器学习技术大会」将于4月18-19日在上海隆重举行。大会云集院士、10所高校科研工作者、近30家一线科技企业技术实战专家组成的超50位重
- 【大模型LLM面试合集】分布式训练_总结
X.AI666
大模型LLM面试合集面试分布式人工智能语言模型
9.总结1.数据并行数据并行,由于其原理相对比较简单,是目前使用最广泛的分布式并行技术。数据并行不仅仅指对训练的数据并行操作,还可以对网络模型梯度、权重参数、优化器状态等数据进行并行。我们首先以PyTorch数据并行的发展(DataParallel、DistributedDataParallel、FullyShardedDataParallel)为主线进行讲述了数据并行的技术原理。同时,也简述了D
- 【vLLM 学习】使用 TPU 安装
HyperAI超神经
vLLM学习人工智能vLLM深度学习TPU机器学习教程
vLLM是一款专为大语言模型推理加速而设计的框架,实现了KV缓存内存几乎零浪费,解决了内存管理瓶颈问题。更多vLLM中文文档及教程可访问→https://vllm.hyper.ai/vLLM使用PyTorchXLA支持GoogleCloudTPU。依赖环境GoogleCloudTPUVM(单主机和多主机)TPU版本:v5e、v5p、v4Python:3.10安装选项:href=“https://v
- 一文搞懂MCU和SoC的核心差异:从架构到应用场景全解析
Electron-er
单片机架构嵌入式硬件
目录引言一、从“芯片大脑”看本质:架构设计的哲学差异1.MCU:单一任务的执行专家2.SoC:系统级集成的超级平台二、实战对比:六大维度拆解差异1.性能指标对比2.开发模式对比三、选型指南:如何选择MCU或SoC?1.选择MCU的场景2.选择SoC的场景四、技术演进:MCU与SoC的融合趋势1.MCU的进化方向2.SoC的突破方向五、开发者避坑指南结语标签:MCUvsSOC、嵌入式系统、芯片选型、
- 一文吃透C++数组:概念与操作大揭秘
大雨淅淅
C++开发数据库c++开发语言
目录一、C++数组初印象二、C++数组概念剖析2.1数组定义与本质2.2数组声明与初始化方式2.2.1声明2.2.2初始化2.3数组元素访问三、C++数组操作全解析3.1遍历数组3.1.1for循环遍历3.1.2范围for循环遍历3.2修改数组元素3.3获取数组大小3.4多维数组操作3.4.1二维数组3.4.2.多维数组拓展3.5数组作为函数参数3.5.1传数组名3.5.2函数原型声明四、C++数
- 《TypeScript 高级类型实战指南:解决真实项目的 7 大痛点》
前端极客探险家
typescript前端vue.jsreact.js
目录标题本文解决的问题:一、表单系统:深度类型约束(可直接用于AntDesign表单)痛点:表单校验逻辑与TS类型脱节二、API响应:自动解包层叠类型(Axios拦截器整合)痛点:后端返回结构嵌套导致类型冗余三、ReduxToolkit:Action类型自动工厂痛点:手写ActionType容易出错四、组件Prop:动态约束联合类型(Vue/React通用)痛点:多形态组件的Prop类型难以维护五
- 30个节点的Doris集群,每个节点有2块7TB的SSD盘,12块8TB的机械盘,分区和分桶的最佳实践
fzip
DorisDoris分区分桶
针对30个节点(每个节点配备2块7TBNVMe盘+12块8TBSATA盘)的Doris集群,以下是分区与分桶的最佳实践方案:一、硬件资源规划与存储优化存储介质分层•NVMe盘:用于存储热数据分区(如最近3天数据)、元数据和高频查询表,利用其高IOPS特性提升实时查询性能。•SATA盘:存储冷数据分区(如历史数据)、大宽表和批量导入的中间数据,通过成本优势支撑海量存储。磁盘负载均衡•每个节点的14块
- 定了!粉丝破800w的陈雷老师确认出席创客匠人5000人的“全球创始人IP领袖高峰论坛”
创小匠
tcp/ip大数据人工智能
正式官宣!全网粉丝800W+、中医学博士——陈雷,确认应邀参加创客匠人5000人“全球创始人IP领袖高峰论坛”,共襄知识服务领域的年度盛宴!由创客匠人发起的“全球创始人IP领袖高峰论坛”将在2024年12月26日-28日在厦门市国际博览会议中心隆重举行。大会邀请到众多行业内的顶尖大咖和领袖人物亲临现场,围绕“IP、趋势、战略、创新、增长”五大关键词,分享他们的宝贵经验和独到见解。这将是2024年底
- AI大模型推理加速:技术与实践详解
AI大模型学习者
人工智能
近年来,AI大模型在自然语言处理、计算机视觉等领域取得了突破性进展。然而,大模型的推理速度却成为其落地应用的瓶颈。本文将详细探讨AI大模型推理加速的技术手段和实践经验,并结合具体案例进行分析。一、挑战与机遇1.1挑战庞大的参数量:大模型通常拥有数十亿甚至数千亿个参数,例如GPT-3拥有1750亿个参数。如此庞大的参数量导致模型文件体积巨大,加载和推理都需要消耗大量的内存和计算资源。复杂的计算图:大
- 大模型高效优化技术全景解析:微调、量化、剪枝、梯度裁剪与蒸馏
时光旅人01号
人工智能剪枝算法深度学习数据挖掘人工智能
目录微调(Fine-tuning)量化(Quantization)剪枝(Pruning)梯度裁剪(GradientClipping)知识蒸馏(KnowledgeDistillation)技术对比与协同策略总结与趋势1.微调(Fine-tuning)核心思想在预训练模型(如BERT、GPT)基础上,通过领域数据调整参数,适配下游任务。方法流程预训练模型加载:加载通用模型权重(如HuggingFace
- 推理大模型:技术解析与未来趋势全景
时光旅人01号
深度学习人工智能pythonpytorch神经网络
1.推理大模型的定义推理大模型(ReasoningLLMs)是专门针对复杂多步推理任务优化的大型语言模型,具备以下核心特性:输出形式创新展示完整逻辑链条(如公式推导、多阶段分析)任务类型聚焦擅长数学证明、编程挑战、多模态谜题等深度逻辑任务训练方法升级融合强化学习、思维链(CoT)、测试时计算扩展等技术2.主流推理大模型图谱2.1国际前沿模型OpenAIo1系列内部生成"思维链"机制数学/代码能力标
- 做亚马逊、temu、速卖通、希音自养号采购砍单率过高需要怎么解决
刘哥测评技术zcwz626
经验分享网络协议网络安全服务器
做无货源模式的卖家越来越多,自养买家号采购时遭遇大砍单是一个普遍而棘手的问题。为了避免这一问题,需要从技术环境搭建、账号权重养成以及下单技巧等多个方面进行系统化操作。以下是一些具体的建议和策略:一、技术环境搭建:确保账号独立性1.硬件隔离:使用独立设备或采用云服务器等隔离技术,确保每个账号拥有唯一的硬件标识,如IMEI、MAC地址等。在同一设备上登录多个账号要确保每个账号都是独立的环境,以防止硬件
- 线路板打样中的PCB拼版技术如何为中小企业节省30%以上成本?
捷配科技
制造pcb工艺捷配
线路板打样和批量生产的成本控制对中小企业来说非常关键,本文将解析PCB拼版的五大核心价值,揭示中小企业在SMT贴片环节的降本秘诀。一、破解线路板打样的成本困局中小企业在小批量生产时常面临两难选择:单独加工导致设备利用率低下,而传统拼版方案又存在设计缺陷。二、PCB拼版技术的五大降本优势1.设备利用效率倍增通过二合一或四合一拼版设计,SMT产线单次印刷可完成多板加工。实测数据显示,采用V-CUT拼版
- LibreTranslate的本地部署与应用服务开发
一望无际的大草原
高级数据应用后端人工智能大模型翻译源码部署
最近在关注大模型预训练文章和应用服务开发,有时候需要借助翻译工具,使用起来都不太方便,就找了一下类似的常见语言的翻译方案,无意中看到一个开源翻译方案(即LibreTranslate),对于通用和计算机类内容的翻译效果还是不错的,因此就对开源翻译代码进行了本地部署和应用服务开发及测试。主要对源码的启动参数、api服务、认证服务和访问权限等内容进行了补充完善,并将依赖的翻译argos-translat
- Sass (Scss) 与 Less 的区别与选择
王强你强
sassscssless
在前端开发中,CSS预处理器如Sass(SyntacticallyAwesomeStylesheets)和Less被广泛使用,它们通过引入变量、嵌套规则、混合、函数等特性,使CSS的开发过程更加高效和灵活。Sass和Less作为两大主流CSS预处理器,各自具有独特的优点和特性。本文将详细探讨Sass(特别是其语法扩展Scss)与Less之间的区别,并提供选择建议。1.语法差异Sass最初是使用缩进
- 用css写背景模糊的三种情况
小竹子14
css前端
1.背景模糊这种最简单也是最直接的,这里展示两种背景模糊的写法:1.用backdrop-filter的一个子属性blur进行设置模糊(这里的值代表的是将n✖n方格里面的像素的颜色做加权平均,即高斯模糊。2.用filter直接进行设置模糊。这里需要注意的是,filter会直接影响元素的内容,而backdrop-filter作用于元素的背景。通常情况下,使用backdrop-filter会使整个元素的
- 【Agent实战】发票信息识别提取专家(AI +OCR技术结合ChatGPT4o能力+结构化prompt(CoT、One-shot等)+Knowledge - RAG+API工具Agent项目实践)
姚瑞南
大模型落地探索及agent搭建RAG技术应用探索prompt实战应用案例人工智能ocrpromptAIGCchatgptgptagi
本文原创作者:姚瑞南AI-agent大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)目录1.项目背景2.项目目标定性:定量:3.发票核心字段概述4.关键举措5.Workflow设计思路及编排5.1整体设计思路5.2流程搭建及解读流程解读:代码节点:解析agent数据
- 深入解析:大型机器学习模型的基本概念与特点
AI大模型-大飞
机器学习人工智能AI大模型AI神经网络大模型
大模型是指具有大规模参数和复杂计算结构的机器学习模型。本文从大模型的基本概念出发,对大模型领域容易混淆的相关概念进行区分,并就大模型的发展历程、特点和分类、泛化与微调进行了详细解读,供大家在了解大模型基本知识的过程中起到一定参考作用。本文目录如下:·大模型的定义·大模型相关概念区分·大模型的发展历程·大模型的特点·大模型的分类·大模型的泛化与微调1.大模型的定义大模型是指具有大规模参数和复杂计算结
- Agent相关文章目录
东哥说-MES|从入门到精通
AI人工智能人工智能规格说明书制造设计规范机器学习自然语言处理
最近写了不少的文章,为了方便阅读,特意重新整理了关于Agent相关的文章链接,也便于大家阅读如何在本地部署DeepSeek本地部署_chatbox显示思考过程-CSDN博客文章浏览阅读853次,点赞29次,收藏31次。最近国产大模型DeepSeek非常火,但由于访问人数过多,经常出现反应迟缓甚至宕机的情况。幸运的是,DeepSeek是一个开源模型,我们可以通过本地部署在自己的终端上随时使用,而且部
- 场景题:100G的文件里有很多id,用1G内存的机器排序,怎么做?
海量数据排序思路核心方案:外排序(分治+多路归并)MapReduce外排序是指数据量太大,无法全部加载到内存中,需要将数据分成多个小块进行排序,然后将排序后的小块合并成一个大的有序块1.分块排序(Map阶段)分块策略按1G内存容量限制,将100G文件拆分为200个500MB分块(保留内存用于排序计算和系统开销)内存排序每个分块加载至内存后:①使用快速排序(时间复杂度O(nlogn))②去重优化:若
- 南京大学×百度“星河杯”AI大模型创意校园赛正式起航
3月9日,教育部长怀进鹏在十四届全国人大二次会议民生主题记者会上,谈到了人工智能+教育的重要性。他强调,要把人工智能技术深入到教育教学和管理的全过程和全环节,研究其有效性和适应性,让青年一代更加主动地学习,让教师更加创造性地教学。南京大学早在年初就已经敏锐地洞察到了人工智能的重要性,在新学期工作布置会上,发布了一个前瞻性决策:24年9月面向全体本科新生开设“人工智能通识核心课程体系”,南京大学党委
- 百度官方!打造「大模型全开发周期系列课程」,AI应用开发入门课率先发布!(内含英雄帖)
在这个大模型技术日新月异的时代,AI的潜力正被无限释放,改变着我们的工作和生活方式。你是否渴望成为这场变革的参与者?你是否也想在这个大模型时代中抢占先机?那“学习AI”、“使用AI”、“入局AI”我们真的可以受益吗?学习辅助:将AI使用融入学习当中,依据当前学习情况,整理重点难点,让复习有的放矢,更高效掌握知识点。效率提升:帮助处理繁琐重复的工具,如数据分析师使用AI识别数据中的关键信息,自动整理
- 大模型(DeepSeek等)是否会动摇AI工程师的工作?
点我头像干啥
Ai深度学习人工智能AI编程计算机视觉
引言近年来,人工智能(AI)领域取得了突飞猛进的发展,尤其是大模型(如GPT-3、BERT、DeepSeek等)的出现,极大地推动了自然语言处理(NLP)、计算机视觉(CV)等领域的进步。大模型凭借其强大的泛化能力和广泛的应用场景,逐渐成为AI领域的核心技术之一。然而,随着大模型的普及,一个备受关注的问题浮出水面:大模型是否会动摇AI工程师的工作?本文将从多个角度探讨这一问题,分析大模型对AI工程
- DeepSeek大模型部署指南
点我头像干啥
Ai人工智能python分类数据挖掘深度学习
在当今人工智能快速发展的时代,大模型的应用越来越广泛。DeepSeek作为一款高性能的大模型,支持长文本、多模态、代码生成等复杂任务,已经在多个领域展现出强大的能力。本文将详细介绍DeepSeek大模型的部署流程,帮助读者在自己的环境中高效地使用这一先进工具。一、DeepSeek大模型简介DeepSeek是一款专注于大模型与AGI(人工智能通用智能)研究的高性能基座模型。它支持长文本处理、多模态理
- 关于旗正规则引擎下载页面需要弹窗保存到本地目录的问题
何必如此
jsp超链接文件下载窗口
生成下载页面是需要选择“录入提交页面”,生成之后默认的下载页面<a>标签超链接为:<a href="<%=root_stimage%>stimage/image.jsp?filename=<%=strfile234%>&attachname=<%=java.net.URLEncoder.encode(file234filesourc
- 【Spark九十八】Standalone Cluster Mode下的资源调度源代码分析
bit1129
cluster
在分析源代码之前,首先对Standalone Cluster Mode的资源调度有一个基本的认识:
首先,运行一个Application需要Driver进程和一组Executor进程。在Standalone Cluster Mode下,Driver和Executor都是在Master的监护下给Worker发消息创建(Driver进程和Executor进程都需要分配内存和CPU,这就需要Maste
- linux上独立安装部署spark
daizj
linux安装spark1.4部署
下面讲一下linux上安装spark,以 Standalone Mode 安装
1)首先安装JDK
下载JDK:jdk-7u79-linux-x64.tar.gz ,版本是1.7以上都行,解压 tar -zxvf jdk-7u79-linux-x64.tar.gz
然后配置 ~/.bashrc&nb
- Java 字节码之解析一
周凡杨
java字节码javap
一: Java 字节代码的组织形式
类文件 {
OxCAFEBABE ,小版本号,大版本号,常量池大小,常量池数组,访问控制标记,当前类信息,父类信息,实现的接口个数,实现的接口信息数组,域个数,域信息数组,方法个数,方法信息数组,属性个数,属性信息数组
}
&nbs
- java各种小工具代码
g21121
java
1.数组转换成List
import java.util.Arrays;
Arrays.asList(Object[] obj); 2.判断一个String型是否有值
import org.springframework.util.StringUtils;
if (StringUtils.hasText(str)) 3.判断一个List是否有值
import org.spring
- 加快FineReport报表设计的几个心得体会
老A不折腾
finereport
一、从远程服务器大批量取数进行表样设计时,最好按“列顺序”取一个“空的SQL语句”,这样可提高设计速度。否则每次设计时模板均要从远程读取数据,速度相当慢!!
二、找一个富文本编辑软件(如NOTEPAD+)编辑SQL语句,这样会很好地检查语法。有时候带参数较多检查语法复杂时,结合FineReport中生成的日志,再找一个第三方数据库访问软件(如PL/SQL)进行数据检索,可以很快定位语法错误。
- mysql linux启动与停止
墙头上一根草
如何启动/停止/重启MySQL一、启动方式1、使用 service 启动:service mysqld start2、使用 mysqld 脚本启动:/etc/inint.d/mysqld start3、使用 safe_mysqld 启动:safe_mysqld&二、停止1、使用 service 启动:service mysqld stop2、使用 mysqld 脚本启动:/etc/inin
- Spring中事务管理浅谈
aijuans
spring事务管理
Spring中事务管理浅谈
By Tony Jiang@2012-1-20 Spring中对事务的声明式管理
拿一个XML举例
[html]
view plain
copy
print
?
<?xml version="1.0" encoding="UTF-8"?>&nb
- php中隐形字符65279(utf-8的BOM头)问题
alxw4616
php中隐形字符65279(utf-8的BOM头)问题
今天遇到一个问题. php输出JSON 前端在解析时发生问题:parsererror.
调试:
1.仔细对比字符串发现字符串拼写正确.怀疑是 非打印字符的问题.
2.逐一将字符串还原为unicode编码. 发现在字符串头的位置出现了一个 65279的非打印字符.
 
- 调用对象是否需要传递对象(初学者一定要注意这个问题)
百合不是茶
对象的传递与调用技巧
类和对象的简单的复习,在做项目的过程中有时候不知道怎样来调用类创建的对象,简单的几个类可以看清楚,一般在项目中创建十几个类往往就不知道怎么来看
为了以后能够看清楚,现在来回顾一下类和对象的创建,对象的调用和传递(前面写过一篇)
类和对象的基础概念:
JAVA中万事万物都是类 类有字段(属性),方法,嵌套类和嵌套接
- JDK1.5 AtomicLong实例
bijian1013
javathreadjava多线程AtomicLong
JDK1.5 AtomicLong实例
类 AtomicLong
可以用原子方式更新的 long 值。有关原子变量属性的描述,请参阅 java.util.concurrent.atomic 包规范。AtomicLong 可用在应用程序中(如以原子方式增加的序列号),并且不能用于替换 Long。但是,此类确实扩展了 Number,允许那些处理基于数字类的工具和实用工具进行统一访问。
 
- 自定义的RPC的Java实现
bijian1013
javarpc
网上看到纯java实现的RPC,很不错。
RPC的全名Remote Process Call,即远程过程调用。使用RPC,可以像使用本地的程序一样使用远程服务器上的程序。下面是一个简单的RPC 调用实例,从中可以看到RPC如何
- 【RPC框架Hessian一】Hessian RPC Hello World
bit1129
Hello world
什么是Hessian
The Hessian binary web service protocol makes web services usable without requiring a large framework, and without learning yet another alphabet soup of protocols. Because it is a binary p
- 【Spark九十五】Spark Shell操作Spark SQL
bit1129
shell
在Spark Shell上,通过创建HiveContext可以直接进行Hive操作
1. 操作Hive中已存在的表
[hadoop@hadoop bin]$ ./spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Welcom
- F5 往header加入客户端的ip
ronin47
when HTTP_RESPONSE {if {[HTTP::is_redirect]}{ HTTP::header replace Location [string map {:port/ /} [HTTP::header value Location]]HTTP::header replace Lo
- java-61-在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差. 求所有数对之差的最大值。例如在数组{2, 4, 1, 16, 7, 5,
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/2541117420116135376632/
写了个java版的
public class GreatestLeftRightDiff {
/**
* Q61.在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差。
* 求所有数对之差的最大值。例如在数组
- mongoDB 索引
开窍的石头
mongoDB索引
在这一节中我们讲讲在mongo中如何创建索引
得到当前查询的索引信息
db.user.find(_id:12).explain();
cursor: basicCoursor 指的是没有索引
&
- [硬件和系统]迎峰度夏
comsci
系统
从这几天的气温来看,今年夏天的高温天气可能会维持在一个比较长的时间内
所以,从现在开始准备渡过炎热的夏天。。。。
每间房屋要有一个落地电风扇,一个空调(空调的功率和房间的面积有密切的关系)
坐的,躺的地方要有凉垫,床上要有凉席
电脑的机箱
- 基于ThinkPHP开发的公司官网
cuiyadll
行业系统
后端基于ThinkPHP,前端基于jQuery和BootstrapCo.MZ 企业系统
轻量级企业网站管理系统
运行环境:PHP5.3+, MySQL5.0
系统预览
系统下载:http://www.tecmz.com
预览地址:http://co.tecmz.com
各种设备自适应
响应式的网站设计能够对用户产生友好度,并且对于
- Transaction and redelivery in JMS (JMS的事务和失败消息重发机制)
darrenzhu
jms事务承认MQacknowledge
JMS Message Delivery Reliability and Acknowledgement Patterns
http://wso2.com/library/articles/2013/01/jms-message-delivery-reliability-acknowledgement-patterns/
Transaction and redelivery in
- Centos添加硬盘完全教程
dcj3sjt126com
linuxcentoshardware
Linux的硬盘识别:
sda 表示第1块SCSI硬盘
hda 表示第1块IDE硬盘
scd0 表示第1个USB光驱
一般使用“fdisk -l”命
- yii2 restful web服务路由
dcj3sjt126com
PHPyii2
路由
随着资源和控制器类准备,您可以使用URL如 http://localhost/index.php?r=user/create访问资源,类似于你可以用正常的Web应用程序做法。
在实践中,你通常要用美观的URL并采取有优势的HTTP动词。 例如,请求POST /users意味着访问user/create动作。 这可以很容易地通过配置urlManager应用程序组件来完成 如下所示
- MongoDB查询(4)——游标和分页[八]
eksliang
mongodbMongoDB游标MongoDB深分页
转载请出自出处:http://eksliang.iteye.com/blog/2177567 一、游标
数据库使用游标返回find的执行结果。客户端对游标的实现通常能够对最终结果进行有效控制,从shell中定义一个游标非常简单,就是将查询结果分配给一个变量(用var声明的变量就是局部变量),便创建了一个游标,如下所示:
> var
- Activity的四种启动模式和onNewIntent()
gundumw100
android
Android中Activity启动模式详解
在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作。在Android中Activity的启动模式决定了Activity的启动运行方式。
Android总Activity的启动模式分为四种:
Activity启动模式设置:
<acti
- 攻城狮送女友的CSS3生日蛋糕
ini
htmlWebhtml5csscss3
在线预览:http://keleyi.com/keleyi/phtml/html5/29.htm
代码如下:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>攻城狮送女友的CSS3生日蛋糕-柯乐义<
- 读源码学Servlet(1)GenericServlet 源码分析
jzinfo
tomcatWebservlet网络应用网络协议
Servlet API的核心就是javax.servlet.Servlet接口,所有的Servlet 类(抽象的或者自己写的)都必须实现这个接口。在Servlet接口中定义了5个方法,其中有3个方法是由Servlet 容器在Servlet的生命周期的不同阶段来调用的特定方法。
先看javax.servlet.servlet接口源码:
package
- JAVA进阶:VO(DTO)与PO(DAO)之间的转换
snoopy7713
javaVOHibernatepo
PO即 Persistence Object VO即 Value Object
VO和PO的主要区别在于: VO是独立的Java Object。 PO是由Hibernate纳入其实体容器(Entity Map)的对象,它代表了与数据库中某条记录对应的Hibernate实体,PO的变化在事务提交时将反应到实际数据库中。
实际上,这个VO被用作Data Transfer
- mongodb group by date 聚合查询日期 统计每天数据(信息量)
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 1 */
{
"_id" : ObjectId("557ac1e2153c43c320393d9d"),
"msgType" : "text",
"sendTime" : ISODate("2015-06-12T11:26:26.000Z")
- java之18天 常用的类(一)
Luob.
MathDateSystemRuntimeRundom
System类
import java.util.Properties;
/**
* System:
* out:标准输出,默认是控制台
* in:标准输入,默认是键盘
*
* 描述系统的一些信息
* 获取系统的属性信息:Properties getProperties();
*
*
*
*/
public class Sy
- maven
wuai
maven
1、安装maven:解压缩、添加M2_HOME、添加环境变量path
2、创建maven_home文件夹,创建项目mvn_ch01,在其下面建立src、pom.xml,在src下面简历main、test、main下面建立java文件夹
3、编写类,在java文件夹下面依照类的包逐层创建文件夹,将此类放入最后一级文件夹
4、进入mvn_ch01
4.1、mvn compile ,执行后会在