转自 :http://blog.xiayf.cn/2013/06/29/learn-python-in-y-minutes/
原文:Learn Python in Y Minutes
译者:youngsterxyf
Python由Guido Van Rossum发明于90年代初期,是目前最流行的编程语言之一,因其语法的清晰简洁我爱上了Python,其代码基本上可以 说是可执行的伪代码。
非常欢迎反馈!你可以通过推特@louiedinh或louiedinh AT gmail联系我。
备注:本文是专门针对Python 2.7的,但应该是适用于Python 2.x的。很快我也会为Python 3写这样的一篇文章!
# 单行注释以井字符开头
""" 我们可以使用三个双引号(")或单引号(')
来编写多行注释
"""# Update the property i.age = 42 # Get the property i.age # => 42 # Delete the property del i.age i.age # => raises an AttributeError #################################################### # 6. Modules模块 #################################################### # You can import modules引用模块 import math print math.sqrt(16) # => 4 # You can get specific functions from a module引用部分函数 from math import ceil, floor print ceil(3.7) # => 4.0 print floor(3.7) # => 3.0 # You can import all functions from a module.引用全部函数 # Warning: this is not recommended from math import * # You can shorten module names用m替代math import math as m math.sqrt(16) == m.sqrt(16) # => True # you can also test that the functions are equivalent from math import sqrt math.sqrt == m.sqrt == sqrt # => True # Python modules are just ordinary python files. You # can write your own, and import them. The name of the # module is the same as the name of the file. # You can find out which functions and attributes # defines a module. import math dir(math) # If you have a Python script named math.py in the same # folder as your current script, the file math.py will # be loaded instead of the built-in Python module. # This happens because the local folder has priority # over Python's built-in libraries. #################################################### # 7. Advanced高级 #################################################### # Generators生成器 # A generator "generates" values as they are requested instead of storing # everything up front # The following method (*NOT* a generator) will double all values and store it # in `double_arr`. For large size of iterables, that might get huge! 没有生成器,存储的变量会变很大 def double_numbers(iterable): double_arr = [] for i in iterable: double_arr.append(i + i) return double_arr 生成器直接先执行for操作 # Running the following would mean we'll double all values first and return all # of them back to be checked by our condition for value in double_numbers(range(1000000)): # `test_non_generator` print value if value > 5: break # We could instead use a generator to "generate" the doubled value as the item # is being requested def double_numbers_generator(iterable): for i in iterable: yield i + i # Running the same code as before, but with a generator, now allows us to iterate # over the values and doubling them one by one as they are being consumed by # our logic. Hence as soon as we see a value > 5, we break out of the # loop and don't need to double most of the values sent in (MUCH FASTER!) for value in double_numbers_generator(xrange(1000000)): # `test_generator` print value if value > 5: break # BTW: did you notice the use of `range` in `test_non_generator` and `xrange` in `test_generator`? # Just as `double_numbers_generator` is the generator version of `double_numbers` # We have `xrange` as the generator version of `range` # `range` would return back and array with 1000000 values for us to use # `xrange` would generate 1000000 values for us as we request / iterate over those items 注:rang()和range()区别在于,range()返回给一个包含1000000值得列表,而xrange()返回一个生成器。 # Just as you can create a list comprehension, you can create generator # comprehensions as well. values = (-x for x in [1, 2, 3, 4, 5]) for x in values: print(x) # prints -1 -2 -3 -4 -5 to console/terminal # You can also cast a generator comprehension directly to a list. values = (-x for x in [1, 2, 3, 4, 5]) gen_to_list = list(values) print(gen_to_list) # => [-1, -2, -3, -4, -5] # Decorators # A decorator is a higher order function, which accepts and returns a function. # Simple usage example – add_apples decorator will add 'Apple' element into # fruits list returned by get_fruits target function. 装饰器 可以接收和返回函数,简单使用: def add_apples(func): def get_fruits(): fruits = func() fruits.append('Apple') return fruits return get_fruits @add_apples def fruits(): return ['Banana', 'Mango', 'Orange'] # Prints out the list of fruits with 'Apple' element in it: # Banana, Mango, Orange, Apple print ', '.join(fruits()) # in this example beg wraps say # Beg will call say. If say_please is True then it will change the returned # message wraps组件: from functools import wraps def beg(target_function): @wraps(target_function) def wrapper(*args, **kwargs): msg, say_please = target_function(*args, **kwargs) if say_please: return "{} {}".format(msg, "Please! I am poor :(") return msg return wrapper @beg def say(say_please=False): msg = "Can you buy me a beer?" return msg, say_please print say() # Can you buy me a beer? print say(say_please=True) # Can you buy me a beer? Please! I am poor :(########################################################## ## 1\. 基本数据类型和操作符 ########################################################## # 数字 3 #=> 3 # 你预想的数学运算 1 + 1 #=> 2 8 - 1 #=> 7 10 * 2 #=> 20 35 / 5 #=> 7 # 除法略显诡异。整数相除会自动向下取小于结果的最大整数 11 / 4 #=> 2 # 还有浮点数和浮点数除法(译注:除数和被除数两者至少一个为浮点数,结果才会是浮点数) 2.0 # 这是一个浮点数 5.0 / 2.0 #=> 2.5 额...语法更明确一些 # 使用括号来强制优先级 (1 + 3) * 2 #=> 8 # 布尔值也是基本类型数据 True False # 使用not来求反 not True #=> False not False #=> True # 相等比较使用== 1 == 1 #=> True 2 == 1 #=> False # 不相等比较使用!= 1 != 1 #=> False 2 != 1 #=> True # 更多的比较方式 1 < 10 #=> True 1 > 10 #=> False 2 <= 2 #=> True 2 >= 2 #=> True # 比较操作可以串接! 1 < 2 < 3 #=> True 2 < 3 < 2 #=> False # 可以使用"或'创建字符串 "This is a string." 'This is also a string.' # 字符串也可以相加! "Hello " + "world!" #=> "Hello world!" # 字符串可以看作是一个字符列表 "This is a string"[0] #=> 'T' # None是一个对象 None #=> None #################################################### ## 2\. 变量与数据容器 #################################################### # 打印输出非常简单 print "I'm Python. Nice to meet you!" # 赋值之前不需要声明变量 some_var = 5 # 约定使用 小写_字母_和_下划线 的命名方式 some_var #=> 5 # 访问之前未赋值的变量会产生一个异常 try: some_other_var except NameError: print "Raises a name error" # 赋值时可以使用条件表达式 some_var = a if a > b else b # 如果a大于b,则将a赋给some_var, # 否则将b赋给some_var # 列表用于存储数据序列 li = [] # 你可以一个预先填充的列表开始 other_li = [4, 5, 6] # 使用append将数据添加到列表的末尾 li.append(1) #li现在为[1] li.append(2) #li现在为[1, 2] li.append(4) #li现在为[1, 2, 4] li.append(3) #li现在为[1, 2, 4, 3] # 使用pop从列表末尾删除数据 li.pop() #=> 3,li现在为[1, 2, 4] # 把刚刚删除的数据存回来 li.append(3) # 现在li再一次为[1, 2, 4, 3] # 像访问数组一样访问列表 li[0] #=> 1 # 看看最后一个元素 li[-1] #=> 3 # 越界访问会产生一个IndexError try: li[4] # 抛出一个IndexError异常 except IndexError: print "Raises an IndexError" # 可以通过分片(slice)语法来查看列表中某个区间的数据 # 以数学角度来说,这是一个闭合/开放区间 li[1:3] #=> [2, 4] # 省略结束位置 li[2:] #=> [4, 3] # 省略开始位置 li[:3] #=> [1, 2, 4] # 使用del从列表中删除任意元素 del li[2] #li现在为[1, 2, 3] # 列表可以相加 li + other_li #=> [1, 3, 3, 4, 5, 6] - 注意:li和other_li并未改变 # 以extend来连结列表 li.extend(other_li) # 现在li为[1, 2, 3, 4, 5, 6] # 以in来检测列表中是否存在某元素 1 in li #=> True # 以len函数来检测列表长度 len(li) #=> 6 # 元组类似列表,但不可变 tup = (1, 2, 3) tup[0] #=> 1 try: tup[0] = 3 # 抛出一个TypeError异常 except TypeError: print "Tuples cannot be mutated." # 可以在元组上使用和列表一样的操作 len(tup) #=> 3 tup + (4, 5, 6) #=> (1, 2, 3, 4, 5, 6) tup[:2] #=> (1, 2) 2 in tup #=> True # 可以将元组解包到变量 a, b, c = (1, 2, 3) # 现在a等于1,b等于2,c等于3 # 如果你省略括号,默认也会创建元组 d, e, f = 4, 5, 6 # 看看两个变量互换值有多简单 e, d = d, e #现在d为5,e为4 # 字典存储映射关系 empty_dict = {} # 这是一个预先填充的字典 filled_dict = {"one": 1, "two": 2, "three": 3} # 以[]语法查找值 filled_dict['one'] #=> 1 # 以列表形式获取所有的键 filled_dict.keys() #=> ["three", "two", "one"] # 注意 - 字典键的顺序是不确定的 # 你的结果也许和上面的输出结果并不一致 # 以in来检测字典中是否存在某个键 "one" in filled_dict #=> True 1 in filled_dict #=> False # 试图使用某个不存在的键会抛出一个KeyError异常 filled_dict['four'] #=> 抛出KeyError异常 # 使用get方法来避免KeyError filled_dict.get("one") #=> 1 filled_dict.get("four") #=> None # get方法支持一个默认参数,不存在某个键时返回该默认参数值 filled_dict.get("one", 4) #=> 1 filled_dict.get("four", 4) #=> 4 # setdefault方法是一种添加新的键-值对到字典的安全方式 filled_dict.setdefault("five", 5) #filled_dict["five"]设置为5 filled_dict.setdefault("five", 6) #filled_dict["five"]仍为5 # 集合 empty_set = set() # 以几个值初始化一个集合 filled_set = set([1, 2, 2, 3, 4]) # filled_set现为set([1, 2, 3, 4, 5]) # 以&执行集合交运算 other_set = set([3, 4, 5, 6]) filled_set & other_set #=> set([3, 4, 5]) # 以|执行集合并运算 filled_set | other_set #=> set([1, 2, 3, 4, 5, 6]) # 以-执行集合差运算 set([1, 2, 3, 4]) - set([2, 3, 5]) #=> set([1, 4]) # 以in来检测集合中是否存在某个值 2 in filled_set #=> True 10 in filled_set #=> False #################################################### ## 3\. 控制流程 #################################################### # 创建个变量 some_var = 5 # 以下是一个if语句。缩进在Python是有重要意义的。 # 打印 "some_var is smaller than 10" if some_var > 10: print "some_var is totally bigger than 10." elif some_var < 10: print "some_var is smaller than 10." else: print "some_var is indeed 10." """ For循环在列表上迭代 输出: dog is a mammal cat is a mammal mouse is a mammal """ for animal in ["dog", "cat", "mouse"]: # 可以使用%来插补格式化字符串 print "%s is a mammal" % animal """ while循环直到未满足某个条件。 输出: 0 1 2 3 """ x = 0 while x < 4: print x x += 1 # x = x + 1的一种简写 # 使用try/except块来处理异常 # 对Python 2.6及以上版本有效 try: # 使用raise来抛出一个错误 raise IndexError("This is an index error") except IndexError as e: pass # pass就是什么都不干。通常这里用来做一些恢复工作 # 对于Python 2.7及以下版本有效 try: raise IndexError("This is an index error") except IndexError, e: # 没有"as",以逗号替代 pass #################################################### ## 4\. 函数 #################################################### # 使用def来创建新函数 def add(x, y): print "x is %s and y is %s" % (x, y) return x + y # 以一个return语句来返回值 # 以参数调用函数 add(5, 6) #=> 11 并输出 "x is 5 and y is 6" # 另一种调用函数的方式是关键字参数 add(x=5, y=6) # 关键字参数可以任意顺序输入 # 可定义接受可变数量的位置参数的函数 def varargs(*args): return args varargs(1, 2, 3) #=> (1, 2, 3) # 也可以定义接受可变数量关键字参数的函数 def keyword_args(**kwargs): return kwargs # 调用一下该函数看看会发生什么 keyword_args(big="foot", loch="ness") #=> {"big": "foo", "loch": "ness"} # 也可以一次性接受两种参数 def all_the_args(*args, **kwargs): print args print kwargs """ all_the_args(1, 2, a=3, b=4)输出: [1, 2] {"a": 3, "b": 4} """ # 在调用一个函数时也可以使用*和** args = (1, 2, 3, 4) kwargs = {"a": 3, "b": 4} foo(*args) #等价于foo(1, 2, 3, 4) foo(**kwargs) # 等价于foo(a=3, b=4) foo(*args, **kwargs) # 等价于foo(1, 2, 3, 4, a=3, b=4) # Python的函数是一等函数 def create_adder(x): def adder(y): return x + y return adder add_10 = create_adder(10) add_10(3) #=> 13 # 也有匿名函数 (lamda x: x > 2)(3) #=> True # 有一些内置的高阶函数 map(add_10, [1, 2, 3]) #=> [11, 12, 13] filter(lamda x: x > 5, [3, 4, 5, 6, 7]) #=>[6, 7] # 可以使用列表推导来实现映射和过滤 [add_10(i) for i in [1, 2, 3]] #=> [11, 13, 13] [x for x in [3, 4, 5, 6,7 ] if x > 5] #=> [6, 7] #################################################### ## 5\. 类 #################################################### # 创建一个子类继承自object来得到一个类 class Human(object): # 类属性。在该类的所有示例之间共享 species = "H. sapiens" # 基本初始化构造方法 def __init__(self, name): # 将参数赋值给实例的name属性 self.name = name # 实例方法。所有示例方法都以self为第一个参数 def say(self, msg): return "%s: %s" % (self.name, msg) # 类方法由所有实例共享 # 以调用类为第一个参数进行调用 @classmethod def get_species(cls): return cls.species # 静态方法的调用不需要一个类或实例的引用 @staticmethod def grunt(): return "*grunt*" # A property is just like a getter. # It turns the method age() into an read-only attribute # of the same name. #属性就像一个getter,让age()只读 @property def age(self): return self._age # This allows the property to be set设置属性 @age.setter def age(self, age): self._age = age # This allows the property to be deleted删除属性 @age.deleter def age(self): del self._age # 实例化一个类 i = Human(name="Ian") print i.say("hi") # 输出"Ian: hi" j = Human("Joel") print j.say("hello") # 输出"Joel: hello" # 调用类方法 i.get_species() #=> "H. sapiens" # 修改共享属性 Human.species = "H. neanderthalensis" i.get_species() #=> "H. neanderthalensis" j.get_species() #=> "H. neanderthalensis" # 调用静态方法 Human.grunt() #=> "*grunt*"