- 人工智能与机器学习原理精解【18】
叶绿先锋
基础数学与应用数学人工智能机器学习
文章目录决策树基础决策树的定义决策树的计算决策树的例子决策树的例题决策树算法一、决策树的算法过程二、决策树的性质Julia中实现框架使用`DecisionTree.jl`使用`MLJ.jl`Julia包的教程一、了解Julia包生态系统二、安装Julia包1.打开JuliaREPL2.使用Pkg包管理器三、使用Julia包四、查找和了解Julia包1.Julia官方文档2.JuliaHub3.Gi
- 机器学习案例-决策树实现鸢尾花分类
Ausgelebt
机器学习相关python分类
机器学习案例-决策树实现鸢尾花分类目录机器学习案例-决策树实现鸢尾花分类1.选题目的和意义2.主要研究内容2.1决策树算法分类(区别于树的结构和构造算法)2.2决策树算法详解2.3决策树的应用3.算法设计3.1数据分析3.1.1Iris数据集基本介绍3.1.2样本标签值分布3.1.3样本特征值分布3.1.4相关性热力图3.2建立决策树3.3模型调优3.3.1决策树深度(预剪枝)3.3.2选取部分特
- python 连续比较_python实现连续变量最优分箱详解--CART算法
weixin_39834788
python连续比较
关于变量分箱主要分为两大类:有监督型和无监督型对应的分箱方法:A.无监督:(1)等宽(2)等频(3)聚类B.有监督:(1)卡方分箱法(ChiMerge)(2)ID3、C4.5、CART等单变量决策树算法(3)信用评分建模的IV最大化分箱等本篇使用python,基于CART算法对连续变量进行最优分箱由于CART是决策树分类算法,所以相当于是单变量决策树分类。简单介绍下理论:CART是二叉树,每次仅进
- 每天一个数据分析题(五百一十四)- 决策树算法
跟着紫枫学姐学CDA
数据分析题库算法数据分析决策树
决策树由节点和边两种元素组成的结构,决策树中不包含一下哪种结点?A.根结点(rootnode)B.内部结点(internalnode)C.外部结点(externalnode)D.叶结点(leafnode)数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,Spark八个方向的专项练
- 详细总结的决策树的来龙去脉,决策树的底层原理是什么?应用的场景如何快速高效应用决策树
九张算数
人工智能决策树算法机器学习
决策树是一种常见的机器学习算法,用于分类和回归任务。它通过将数据递归地划分成更小的子集来构建一个树状模型,从而做出决策。本文将详细介绍决策树的历史背景、底层原理、构建过程、常见的算法、应用场景以及优缺点。一、历史背景决策树的概念可以追溯到20世纪60年代。最早的决策树算法之一是ID3(IterativeDichotomiser3),由RossQuinlan在1986年提出。ID3通过信息增益(In
- 深度探索:决策树算法在机器学习中的原理与应用
生瓜蛋子
机器学习算法机器学习决策树
引言与背景决策树算法作为机器学习领域的一种基础而重要的监督学习方法,以其直观易理解、解释性强以及能处理离散和连续属性等特点,在数据挖掘、数据分析和预测建模等诸多领域占有不可或缺的地位。决策树通过学习训练数据集构建一棵树状结构模型,模拟从根节点到叶节点的决策路径,以此进行样本分类或回归预测。定义决策树算法是一种非参数模型,其核心思想是通过递归地划分数据空间,形成一系列if-then规则,最终构成一棵
- 【深度学习入门项目】一文带你弄清决策树(鸢尾花分类)
Better Rose
深度学习深度学习决策树分类
目录实验原理1.信息增益2.增益率3.基尼指数4.剪枝处理一、加载数据集二、配置模型三、训练模型四、模型预测五、模型评估六、决策树调参1.criterion2.max_depth实验原理决策树(decisiontree)是一种应用广泛的机器学习方法。顾名思义,决策树算法的表现形式可以直观理解为一棵树(可以是二叉树或非二叉树)。一棵决策树一般包含一个根节点、一系列内部节点和叶节点,一个叶节点对应一个
- Python机器学习笔记:CART算法实战
战争热诚
完整代码及其数据,请移步小编的GitHub传送门:请点击我如果点击有误:https://github.com/LeBron-Jian/MachineLearningNote前言在python机器学习笔记:深入学习决策树算法原理一文中我们提到了决策树里的ID3算法,C4.5算法,并且大概的了
- LightGBM高级教程:时间序列建模
Echo_Wish
Python算法Python笔记人工智能深度学习机器学习数据挖掘
导言时间序列数据在许多领域中都非常常见,如金融、气象、交通等。LightGBM作为一种高效的梯度提升决策树算法,可以用于时间序列建模。本教程将详细介绍如何在Python中使用LightGBM进行时间序列建模,并提供相应的代码示例。数据准备首先,我们需要加载时间序列数据并准备数据用于模型训练。以下是一个简单的示例:importpandasaspd#加载时间序列数据data=pd.read_csv('
- 学习笔记:机器学习之决策树
萌龙如我们
机器学习机器学习决策树学习
0引入决策树是一种归纳式的机器学习算法,可用于分类和回归任务。比如生活中的选男朋友的例子,是否决定将自己托付终生给那个他,就是个二分类问题。考量一个人有很多考量属性,年龄、长相、收入等等。决策树可以帮做做出决策,经过一个个if-then规则后可得到答案。大部分人会首先考虑年龄,认为这是一个首要考虑的指标,年纪太大可能直接Pass了,年龄合适,再继续考量后边的指标。决策树算法就是建立一个模型去帮你做
- 【机器学习笔记】8 决策树
RIKI_1
机器学习机器学习笔记决策树
决策树原理决策树是从训练数据中学习得出一个树状结构的模型。决策树属于判别模型。决策树是一种树状结构,通过做出一系列决策(选择)来对数据进行划分,这类似于针对一系列问题进行选择。决策树的决策过程就是从根节点开始,测试待分类项中对应的特征属性,并按照其值选择输出分支,直到叶子节点,将叶子节点的存放的类别作为决策结果。以下小美相亲的例子就是决策树决策树算法是一种归纳分类算法,它通过对训练集的学习,挖掘出
- 【机器学习算法】KNN鸢尾花种类预测案例和特征预处理。全md文档笔记(已分享,附代码)
机器学习python算法
本系列文章md笔记(已分享)主要讨论机器学习算法相关知识。机器学习算法文章笔记以算法、案例为驱动的学习,伴随浅显易懂的数学知识,让大家掌握机器学习常见算法原理,应用Scikit-learn实现机器学习算法的应用,结合场景解决实际问题。包括K-近邻算法,线性回归,逻辑回归,决策树算法,集成学习,聚类算法。K-近邻算法的距离公式,应用LinearRegression或SGDRegressor实现回归预
- 【机器学习】机器学习常见算法详解第4篇:KNN算法计算过程(已分享,附代码)
机器学习python算法
本系列文章md笔记(已分享)主要讨论机器学习算法相关知识。机器学习算法文章笔记以算法、案例为驱动的学习,伴随浅显易懂的数学知识,让大家掌握机器学习常见算法原理,应用Scikit-learn实现机器学习算法的应用,结合场景解决实际问题。包括K-近邻算法,线性回归,逻辑回归,决策树算法,集成学习,聚类算法。K-近邻算法的距离公式,应用LinearRegression或SGDRegressor实现回归预
- [Stay Sharp]决策树ID3算法实现
三千雨点
介绍通过101种动物的17种形态数据以及对应的动物种类([1:哺乳动物,2:鸟类,3:爬虫类,4:鱼类,5:两栖动物,6:昆虫,7:无脊椎动物])来学习决策树算法。数据解释AttributeInformation:(nameofattributeandtypeofvaluedomain)序号特征名称特征类型1animalnameUniqueforeachinstance2hairBoolean3f
- 决策树与随机森林算法
YuanDaima2048
机器学习决策树随机森林机器学习人工智能算法笔记
决策树与随机森林算法决策树算法概述决策树是一种基于树形结构的机器学习算法,用于建立对象属性与对象值之间的映射关系。在决策树中,每个节点代表某个对象,分叉路径表示可能的属性值,而叶节点则对应着从根节点到该叶节点所经历的路径所表示的对象值。通过分析训练数据,决策树学习如何将输入特征映射到输出标签,从而实现数据分类或预测任务。在分类问题中,决策树可以帮助确定输入数据属于哪个类别在预测问题中,决策树可以根
- 【机器学习笔记】决策树
住在天上的云
机器学习机器学习笔记决策树
决策树文章目录决策树1决策树学习基础2经典决策树算法3过拟合问题1决策树学习基础适用决策树学习的经典目标问题带有非数值特征的分类问题离散特征没有相似度概念特征无序例子:SkyTempHumidWindWaterForecastEnjoySunnyWarmNormalStrongWarmSameYesSunnyWarmHighStrongWarmSameYesRainyColdHighStrongW
- sklearn中一些简单机器学习算法的使用
橘柚jvyou
机器学习sklearn算法
目录前言KNN算法决策树算法朴素贝叶斯算法岭回归算法线性优化算法前言本篇文章会介绍一些sklearn库中简单的机器学习算法如何使用,一些注释已经写在代码中,帮助一些小伙伴入门sklearn库的使用。注意:本篇文章只涉及到如何使用,并不会讲解原理,如果想了解原理的小伙伴请自行搜索其他技术博客或者查看官方文档。KNN算法fromsklearn.datasetsimportload_iris#导入莺尾花
- 统计学习方法笔记之决策树
Aengus_Sun
更多文章可以访问我的博客Aengus|Blog决策树的概念比较简单,可以将决策树看做一个if-then集合:如果“条件1”,那么...。决策树学习的损失函数通常是正则化后极大似然函数,学习的算法通常是一个递归的选择最优特征,并根据该特征对训练数据进行分割,使得对各个子数据集有一个最好的分类的过程。可以看出,决策树算法一般包含特征选择,决策树的生成与决策树的剪枝过程。特征选择信息增益熵和条件熵在了解
- 【机器学习】决策树
如果皮卡会coding
机器学习Python机器学习决策树人工智能
文章目录一.决策树算法简介二.决策树构建步骤三.特征说明3.1信息增益(InformationGain,IG)3.2基尼不纯度(GiniImpurity)四.剪枝策略五.决策树的评估六.代码实践例1:决策树分类例2:决策树回归补充:可视化例3:剪枝策略一.决策树算法简介决策树(DecisionTree)用于分类和回归任务。它通过构建树状模型来进行决策。决策树算法的基本思想是基于数据特征进行递归分裂
- python sklearn.tree 决策树参数
有头发的偷心盗贼
原文链接:https://www.jianshu.com/p/d1d17499365c1.重要参数:criterion为了要将表格转化为一棵树,决策树需要找出最佳节点和最佳的分枝方法,对分类树来说,衡量这个“最佳”的指标叫做“不纯度”。通常来说,不纯度越低,决策树对训练集的拟合越好。现在使用的决策树算法在分枝方法上的核心大多是围绕在对某个不纯度相关指标的最优化上。不纯度基于节点来计算,树中的每个节
- Scikit-learn-04.决策树算法
sun zi chao
scikit-learn决策树scikit-learnpython
本系列文章介绍人工智能的基础概念和常用公式。由于协及内容所需的数学知识要求,建议初二以上同学学习。运行本系统程序,请在电脑安装好Python、matplotlib和scikit-learn库。相关安装方法可自行在百度查找。这节我们来说机器学习中常用的一个功能-决策树。决策树是分类器中的一种,属于有监督学习方法。简单来说,分类器就是根据样本的特征或属性,划分到已有的类别中。也就是说,这些类别是已知的
- scikit-learn决策树算法笔记总结
python收藏家
决策树算法scikit-learn
1.scikit-learn决策树算法类库介绍scikit-learn决策树算法类库内部实现是使用了调优过的CART树算法,既可以做分类,又可以做回归。分类决策树的类对应的是DecisionTreeClassifier,而回归决策树的类对应的是DecisionTreeRegressor。两者的参数定义几乎完全相同,但是意义不全相同。下面就对DecisionTreeClassifier和Decisi
- 数据挖掘实战-基于决策树算法构建北京市空气质量预测模型
艾派森
数据挖掘机器学习人工智能数据挖掘python决策树
♂️个人主页:@艾派森的个人主页✍作者简介:Python学习者希望大家多多支持,我们一起进步!如果文章对你有帮助的话,欢迎评论点赞收藏加关注+目录1.项目背景2.项目简介2.1项目说明2.2数据说明2.3技术工具3.算法原理4.项目实施步骤4.1理解数据4.2数据预处理4.3探索性数据分析4.4特征工程4.5模型构建4.6模型评估5.实验总结源代码1.项目背景随着城市化进程的加速,空气质量问题日
- 机器学习系列——(九)决策树
飞影铠甲
机器学习机器学习决策树人工智能
简介决策树作为机器学习的一种经典算法,在数据挖掘、分类和回归等任务中广泛应用。本文将详细介绍机器学习中的决策树算法,包括其原理、构建过程和应用场景。原理决策树是一种基于树状结构的监督学习算法,它通过构建一棵树来对数据进行分类或回归预测。决策树的每个内部节点代表一个特征属性,每个叶子节点代表一个类别或数值。决策树的构建过程:特征选择:根据某种指标选择最佳特征,将数据集划分为不同的子集。决策节点生成:
- 机器学习算法之决策树(DT)
迎风斯黄
数学建模美赛机器学习算法决策树
决策树(DecisionTree)算法是一种直观且广泛应用的机器学习方法,用于解决分类和回归问题。通过模拟决策过程构造树形结构,决策树既简单又强大,适合入门者深入了解。本文将全面介绍决策树算法的原理、特点、优缺点,并通过一个Python示例展示如何使用决策树进行数据分类。决策树算法原理决策树通过递归地选择最优特征并对数据集进行分割,形成树形结构,直至达到停止条件。每个内部节点代表一个特征上的测试,
- 2019-07-15 周学习计划
昭南小星
1.K近邻算法;决策树算法;朴素贝叶斯算法;2.10小节屈婉玲算法课;3.Go语言编程(许式伟)Channel看完;4.流畅的Python元类章节看完;5.减1KG;完成:1.alittle(5)2.0小节(0)3.None(0)4.None(0)5.103.6-103.9=-0.3(0)完成度5/100=5%
- 机器学习算法之分类和回归树(CART)
迎风斯黄
数学建模美赛机器学习算法分类
分类和回归树(ClassificationandRegressionTrees,CART)是一种强大的机器学习算法,用于解决分类和回归问题。本篇博文将深入介绍CART算法的工作原理、应用领域以及Python示例。算法背景CART算法最早由LeoBreiman等人于1984年提出,它是一种决策树算法,用于将数据集划分成多个子集,每个子集内的数据具有相似的特性。CART算法可以用于分类问题和回归问题,
- 01-16
姬汉斯
今天看的是算法部分,首先就是C4.5决策树算法,能够对离散型信息数据进行操作,同时补充有属性缺失的相关数据,在决策树构造过程中进行删减处理。然后就是结合此前的概率论的速速贝叶斯算法,和概率论的基本接近,对未知情况的事物进行模拟分析,计算出大致的概率,以进行数据信息分类等操作。
- [机器学习]决策树相关知识点
-Helslie
机器学习机器学习
决策树算法是基于树结构进行决策学习的,目的是为了产生一棵泛化能力强,即处理未见示例能力强的决策树,其基本流程遵循简单而直观的“分而治之”的策略。导致递归返回的情形(即无划分行为):无需划分:当前结点包含的样本全属于同一类别无法划分:当前属性集为空,或是所有样本在所有属性上取值相同我们把当前结点标记为叶结点,井将其类别设定为该结点所含样本最多的类别不能划分:当前结点包含的样本集合为空同样把当前结点标
- 决策树系列之决策树知识点
coffeetea01
机器学习机器学习决策树
1、什么是决策树;(decisiontree)决策树是一种树型结构,其中:每个内部的结点表示在一个属性的测试;每个分支代表一个测试的输出;每个叶节点代表一种类别;决策树是以实例为基础的归纳学习,采取的是自顶向下的递归方法;其基本思想是,以信息熵为度量构建一颗熵值下降最快的树,到叶子结点处的熵值为0,此时所有的叶节点的熵值都属于同一类。附上:叶节点的信息熵公式为:2、决策树算法的整体特点:最大的特点
- LeetCode[位运算] - #137 Single Number II
Cwind
javaAlgorithmLeetCode题解位运算
原题链接:#137 Single Number II
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现三次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
与#136类似,都是考察位运算。不过出现两次的可以使用异或运算的特性 n XOR n = 0, n XOR 0 = n,即某一
- 《JavaScript语言精粹》笔记
aijuans
JavaScript
0、JavaScript的简单数据类型包括数字、字符创、布尔值(true/false)、null和undefined值,其它值都是对象。
1、JavaScript只有一个数字类型,它在内部被表示为64位的浮点数。没有分离出整数,所以1和1.0的值相同。
2、NaN是一个数值,表示一个不能产生正常结果的运算结果。NaN不等于任何值,包括它本身。可以用函数isNaN(number)检测NaN,但是
- 你应该更新的Java知识之常用程序库
Kai_Ge
java
在很多人眼中,Java 已经是一门垂垂老矣的语言,但并不妨碍 Java 世界依然在前进。如果你曾离开 Java,云游于其它世界,或是每日只在遗留代码中挣扎,或许是时候抬起头,看看老 Java 中的新东西。
Guava
Guava[gwɑ:və],一句话,只要你做Java项目,就应该用Guava(Github)。
guava 是 Google 出品的一套 Java 核心库,在我看来,它甚至应该
- HttpClient
120153216
httpclient
/**
* 可以传对象的请求转发,对象已流形式放入HTTP中
*/
public static Object doPost(Map<String,Object> parmMap,String url)
{
Object object = null;
HttpClient hc = new HttpClient();
String fullURL
- Django model字段类型清单
2002wmj
django
Django 通过 models 实现数据库的创建、修改、删除等操作,本文为模型中一般常用的类型的清单,便于查询和使用: AutoField:一个自动递增的整型字段,添加记录时它会自动增长。你通常不需要直接使用这个字段;如果你不指定主键的话,系统会自动添加一个主键字段到你的model。(参阅自动主键字段) BooleanField:布尔字段,管理工具里会自动将其描述为checkbox。 Cha
- 在SQLSERVER中查找消耗CPU最多的SQL
357029540
SQL Server
返回消耗CPU数目最多的10条语句
SELECT TOP 10
total_worker_time/execution_count AS avg_cpu_cost, plan_handle,
execution_count,
(SELECT SUBSTRING(text, statement_start_of
- Myeclipse项目无法部署,Undefined exploded archive location
7454103
eclipseMyEclipse
做个备忘!
错误信息为:
Undefined exploded archive location
原因:
在工程转移过程中,导致工程的配置文件出错;
解决方法:
 
- GMT时间格式转换
adminjun
GMT时间转换
普通的时间转换问题我这里就不再罗嗦了,我想大家应该都会那种低级的转换问题吧,现在我向大家总结一下如何转换GMT时间格式,这种格式的转换方法网上还不是很多,所以有必要总结一下,也算给有需要的朋友一个小小的帮助啦。
1、可以使用
SimpleDateFormat SimpleDateFormat
EEE-三位星期
d-天
MMM-月
yyyy-四位年
- Oracle数据库新装连接串问题
aijuans
oracle数据库
割接新装了数据库,客户端登陆无问题,apache/cgi-bin程序有问题,sqlnet.log日志如下:
Fatal NI connect error 12170.
VERSION INFORMATION: TNS for Linux: Version 10.2.0.4.0 - Product
- 回顾java数组复制
ayaoxinchao
java数组
在写这篇文章之前,也看了一些别人写的,基本上都是大同小异。文章是对java数组复制基础知识的回顾,算是作为学习笔记,供以后自己翻阅。首先,简单想一下这个问题:为什么要复制数组?我的个人理解:在我们在利用一个数组时,在每一次使用,我们都希望它的值是初始值。这时我们就要对数组进行复制,以达到原始数组值的安全性。java数组复制大致分为3种方式:①for循环方式 ②clone方式 ③arrayCopy方
- java web会话监听并使用spring注入
bewithme
Java Web
在java web应用中,当你想在建立会话或移除会话时,让系统做某些事情,比如说,统计在线用户,每当有用户登录时,或退出时,那么可以用下面这个监听器来监听。
import java.util.ArrayList;
import java.ut
- NoSQL数据库之Redis数据库管理(Redis的常用命令及高级应用)
bijian1013
redis数据库NoSQL
一 .Redis常用命令
Redis提供了丰富的命令对数据库和各种数据库类型进行操作,这些命令可以在Linux终端使用。
a.键值相关命令
b.服务器相关命令
1.键值相关命令
&
- java枚举序列化问题
bingyingao
java枚举序列化
对象在网络中传输离不开序列化和反序列化。而如果序列化的对象中有枚举值就要特别注意一些发布兼容问题:
1.加一个枚举值
新机器代码读分布式缓存中老对象,没有问题,不会抛异常。
老机器代码读分布式缓存中新对像,反序列化会中断,所以在所有机器发布完成之前要避免出现新对象,或者提前让老机器拥有新增枚举的jar。
2.删一个枚举值
新机器代码读分布式缓存中老对象,反序列
- 【Spark七十八】Spark Kyro序列化
bit1129
spark
当使用SparkContext的saveAsObjectFile方法将对象序列化到文件,以及通过objectFile方法将对象从文件反序列出来的时候,Spark默认使用Java的序列化以及反序列化机制,通常情况下,这种序列化机制是很低效的,Spark支持使用Kyro作为对象的序列化和反序列化机制,序列化的速度比java更快,但是使用Kyro时要注意,Kyro目前还是有些bug。
Spark
- Hybridizing OO and Functional Design
bookjovi
erlanghaskell
推荐博文:
Tell Above, and Ask Below - Hybridizing OO and Functional Design
文章中把OO和FP讲的深入透彻,里面把smalltalk和haskell作为典型的两种编程范式代表语言,此点本人极为同意,smalltalk可以说是最能体现OO设计的面向对象语言,smalltalk的作者Alan kay也是OO的最早先驱,
- Java-Collections Framework学习与总结-HashMap
BrokenDreams
Collections
开发中常常会用到这样一种数据结构,根据一个关键字,找到所需的信息。这个过程有点像查字典,拿到一个key,去字典表中查找对应的value。Java1.0版本提供了这样的类java.util.Dictionary(抽象类),基本上支持字典表的操作。后来引入了Map接口,更好的描述的这种数据结构。
&nb
- 读《研磨设计模式》-代码笔记-职责链模式-Chain Of Responsibility
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 业务逻辑:项目经理只能处理500以下的费用申请,部门经理是1000,总经理不设限。简单起见,只同意“Tom”的申请
* bylijinnan
*/
abstract class Handler {
/*
- Android中启动外部程序
cherishLC
android
1、启动外部程序
引用自:
http://blog.csdn.net/linxcool/article/details/7692374
//方法一
Intent intent=new Intent();
//包名 包名+类名(全路径)
intent.setClassName("com.linxcool", "com.linxcool.PlaneActi
- summary_keep_rate
coollyj
SUM
BEGIN
/*DECLARE minDate varchar(20) ;
DECLARE maxDate varchar(20) ;*/
DECLARE stkDate varchar(20) ;
DECLARE done int default -1;
/* 游标中 注册服务器地址 */
DE
- hadoop hdfs 添加数据目录出错
daizj
hadoophdfs扩容
由于原来配置的hadoop data目录快要用满了,故准备修改配置文件增加数据目录,以便扩容,但由于疏忽,把core-site.xml, hdfs-site.xml配置文件dfs.datanode.data.dir 配置项增加了配置目录,但未创建实际目录,重启datanode服务时,报如下错误:
2014-11-18 08:51:39,128 WARN org.apache.hadoop.h
- grep 目录级联查找
dongwei_6688
grep
在Mac或者Linux下使用grep进行文件内容查找时,如果给定的目标搜索路径是当前目录,那么它默认只搜索当前目录下的文件,而不会搜索其下面子目录中的文件内容,如果想级联搜索下级目录,需要使用一个“-r”参数:
grep -n -r "GET" .
上面的命令将会找出当前目录“.”及当前目录中所有下级目录
- yii 修改模块使用的布局文件
dcj3sjt126com
yiilayouts
方法一:yii模块默认使用系统当前的主题布局文件,如果在主配置文件中配置了主题比如: 'theme'=>'mythm', 那么yii的模块就使用 protected/themes/mythm/views/layouts 下的布局文件; 如果未配置主题,那么 yii的模块就使用 protected/views/layouts 下的布局文件, 总之默认不是使用自身目录 pr
- 设计模式之单例模式
come_for_dream
设计模式单例模式懒汉式饿汉式双重检验锁失败无序写入
今天该来的面试还没来,这个店估计不会来电话了,安静下来写写博客也不错,没事翻了翻小易哥的博客甚至与大牛们之间的差距,基础知识不扎实建起来的楼再高也只能是危楼罢了,陈下心回归基础把以前学过的东西总结一下。
*********************************
- 8、数组
豆豆咖啡
二维数组数组一维数组
一、概念
数组是同一种类型数据的集合。其实数组就是一个容器。
二、好处
可以自动给数组中的元素从0开始编号,方便操作这些元素
三、格式
//一维数组
1,元素类型[] 变量名 = new 元素类型[元素的个数]
int[] arr =
- Decode Ways
hcx2013
decode
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, det
- Spring4.1新特性——异步调度和事件机制的异常处理
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- squid3(高命中率)缓存服务器配置
liyonghui160com
系统:centos 5.x
需要的软件:squid-3.0.STABLE25.tar.gz
1.下载squid
wget http://www.squid-cache.org/Versions/v3/3.0/squid-3.0.STABLE25.tar.gz
tar zxf squid-3.0.STABLE25.tar.gz &&
- 避免Java应用中NullPointerException的技巧和最佳实践
pda158
java
1) 从已知的String对象中调用equals()和equalsIgnoreCase()方法,而非未知对象。 总是从已知的非空String对象中调用equals()方法。因为equals()方法是对称的,调用a.equals(b)和调用b.equals(a)是完全相同的,这也是为什么程序员对于对象a和b这么不上心。如果调用者是空指针,这种调用可能导致一个空指针异常
Object unk
- 如何在Swift语言中创建http请求
shoothao
httpswift
概述:本文通过实例从同步和异步两种方式上回答了”如何在Swift语言中创建http请求“的问题。
如果你对Objective-C比较了解的话,对于如何创建http请求你一定驾轻就熟了,而新语言Swift与其相比只有语法上的区别。但是,对才接触到这个崭新平台的初学者来说,他们仍然想知道“如何在Swift语言中创建http请求?”。
在这里,我将作出一些建议来回答上述问题。常见的
- Spring事务的传播方式
uule
spring事务
传播方式:
新建事务
required
required_new - 挂起当前
非事务方式运行
supports
&nbs