Andorid的View绘制流程

前言

Android的view绘制流程是一个比较重要的问题,理解好view的绘制流程,对平时开发工作非常有帮助,同时也是面试中常问的问题。

本文尝试从源码角度,结合其他人的博客,描述一下我对view绘制的一些理解

概述

Andorid的View绘制流程_第1张图片

每个Activity都有一个window接口实现PhoneWindow,用于承载用户界面。contentView就是R.id.content,setContentView()就是设置它的子View。

Window

窗口是图像显示的一个容器,独占一个surface实例的显示区域,surface由WindowManagerService分配,看一看成一张画布,由canvas或者openGL在上面进行绘制后,通过SurfaceFlinger将多块surface按一定顺序排列混合好,输出到FrameBuffer中,得以显示。

android.view.Window包含三个核心组件:
  • WindowManager.LayoutParams:布局参数
  • callback:回调,一般在Activity中实现
  • ViewTree:窗口所承载的控件树

PhoneWindow

它是Window接口唯一的具体实现。setContentView()方法设置Activity时,实际上完成了PhoneWindow的ViewTree的设置;而requestWindowFeature()用来定制Activity关联的PhoneWindow的外观,实际上也是将外观特性参数存储到了PhoneWindow的mFeatures中,在窗口绘制阶段生成外观模板时,根据mFeatures生成特定外观。

setContentView()

此方法完成了Activity的contentView创建,但是并没有进行绘制。自定义activity继承自Activity和AppCompatActivity时,此方法的执行逻辑不一样。

  • 先说Activity:
public void setContentView(@LayoutRes int layoutResID) {
    getWindow().setContentView(layoutResID);
    initWindowDecorActionBar();
}

getWindow()返回Activity关联的PhoneWindow:

@Override
public void setContentView(int layoutResID) {
    // Note: FEATURE_CONTENT_TRANSITIONS may be set in the process of installing the window
    // decor, when theme attributes and the like are crystalized. Do not check the feature
    // before this happens.
    if (mContentParent == null) {
        // mContentParent即为上面提到的ContentView的父容器,若为空则调用installDecor()生成
        installDecor();
    } else if (!hasFeature(FEATURE_CONTENT_TRANSITIONS)) {
        mContentParent.removeAllViews();
    }

    if (hasFeature(FEATURE_CONTENT_TRANSITIONS)) {
        final Scene newScene = Scene.getSceneForLayout(mContentParent, layoutResID,
                getContext());
        transitionTo(newScene);
    } else {
        // 调用mLayoutInflater.inflate()方法来填充布局
        // 填充布局也就是把我们设置的ContentView加入到mContentParent中
        mLayoutInflater.inflate(layoutResID, mContentParent);
    }
    mContentParent.requestApplyInsets();
    // cb即为该Window所关联的Activity
    final Callback cb = getCallback();
    if (cb != null && !isDestroyed()) {
        // 调用onContentChanged()回调方法通知Activity窗口内容发生了改变
        cb.onContentChanged();
    }
    mContentParentExplicitlySet = true;
}
  • AppCompatActivity:
@Override
public void setContentView(@LayoutRes int layoutResID) {
    getDelegate().setContentView(layoutResID);
}

getDelegate()返回继承自AppCompatDelegate的代理类,根据不同api的level调用不同类。但是无论api是多少,这里的逻辑都是一样的。

@Override
public void setContentView(int resId) {
    ensureSubDecor();
    ViewGroup contentParent = (ViewGroup) mSubDecor.findViewById(android.R.id.content);
    contentParent.removeAllViews();
    LayoutInflater.from(mContext).inflate(resId, contentParent);
    mOriginalWindowCallback.onContentChanged();
}

逻辑比较简单,不多说了。

LayoutInflater.inflate()

setContentView()调用了LayoutInflater.inflate()来进行资源文件解析。

public View inflate(@LayoutRes int resource, @Nullable ViewGroup root, boolean attachToRoot) {
    final Resources res = getContext().getResources();
 
    final XmlResourceParser parser = res.getLayout(resource);
    try {
        return inflate(parser, root, attachToRoot);
    } finally {
        parser.close();
    }
}

无论是Activity还是AppCompatActivity都把ContentView作为root参数传进去,最终调用inflate(XmlPullParser, viewGroup, boolean)填充布局。

public View inflate(XmlPullParser parser, @Nullable ViewGroup root, boolean attachToRoot) {
    synchronized (mConstructorArgs) {
        Trace.traceBegin(Trace.TRACE_TAG_VIEW, "inflate");

        final Context inflaterContext = mContext;
        final AttributeSet attrs = Xml.asAttributeSet(parser);
        Context lastContext = (Context) mConstructorArgs[0];
        mConstructorArgs[0] = inflaterContext;
        View result = root;

        try {
            // Look for the root node.
            int type;
            // 一直读取xml文件,直到遇到开始标记
            while ((type = parser.next()) != XmlPullParser.START_TAG &&
                    type != XmlPullParser.END_DOCUMENT) {
                // Empty
            }
            // 最先遇到的不是开始标记,报错
            if (type != XmlPullParser.START_TAG) {
                throw new InflateException(parser.getPositionDescription()
                        + ": No start tag found!");
            }

            final String name = parser.getName();
            ...
            // 单独处理标签
            if (TAG_MERGE.equals(name)) {
                // 若包含标签,父容器(即root参数)不可为空且attachRoot须为true,否则报错
                if (root == null || !attachToRoot) {
                    throw new InflateException(" can be used only with a valid "
                            + "ViewGroup root and attachToRoot=true");
                }
                // 递归地填充布局
                rInflate(parser, root, inflaterContext, attrs, false);
            } else {
                // Temp is the root view that was found in the xml
                // temp为xml布局文件的根View
                final View temp = createViewFromTag(root, name, inflaterContext, attrs);

                ViewGroup.LayoutParams params = null;

                if (root != null) {
                    ...
                    // 获取父容器的布局参数(LayoutParams)
                    // Create layout params that match root, if supplied
                    params = root.generateLayoutParams(attrs);
                    if (!attachToRoot) {
                        // Set the layout params for temp if we are not
                        // attaching. (If we are, we use addView, below)
                        // 若attachToRoot参数为false,则我们只会将父容器的布局参数设置给根View
                        temp.setLayoutParams(params);
                    }
                }

                ...

                // Inflate all children under temp against its context.
                // 递归加载根View的所有子View
                rInflateChildren(parser, temp, attrs, true);

                ...

                // We are supposed to attach all the views we found (int temp)
                // to root. Do that now.
                if (root != null && attachToRoot) {
                    // 若父容器不为空且attachToRoot为true,则将父容器作为根View的父View包裹上来
                    root.addView(temp, params);
                }

                // Decide whether to return the root that was passed in or the
                // top view found in xml.
                // 若root为空或是attachToRoot为false,则以根View作为返回值
                if (root == null || !attachToRoot) {
                    result = temp;
                }
            }

        } catch (XmlPullParserException e) {
            ...
        } catch (Exception e) {
            ...
        } finally {
            ...
        }

        return result;
    }
}

单独处理,调用的是rInflate():

void rInflate(XmlPullParser parser, View parent, Context context,
        AttributeSet attrs, boolean finishInflate) throws XmlPullParserException, IOException {
    // 获取当前标记的深度,根标记的深度为0
    final int depth = parser.getDepth();
    int type;
    boolean pendingRequestFocus = false;
   
    while (((type = parser.next()) != XmlPullParser.END_TAG ||
            parser.getDepth() > depth) && type != XmlPullParser.END_DOCUMENT) {
         // 不是开始标记则继续下一次迭代
        if (type != XmlPullParser.START_TAG) {
            continue;
        }

        final String name = parser.getName();
        // 对一些特殊标记做单独处理
        if (TAG_REQUEST_FOCUS.equals(name)) {
            pendingRequestFocus = true;
            consumeChildElements(parser);
        } else if (TAG_TAG.equals(name)) {
            parseViewTag(parser, parent, attrs);
        } else if (TAG_INCLUDE.equals(name)) {
            if (parser.getDepth() == 0) {
                throw new InflateException(" cannot be the root element");
            }
            // 对做处理
            parseInclude(parser, context, parent, attrs);
        } else if (TAG_MERGE.equals(name)) {
            throw new InflateException(" must be the root element");
        } else {
            // 对一般标记的处理
            final View view = createViewFromTag(parent, name, context, attrs);
            final ViewGroup viewGroup = (ViewGroup) parent;
            final ViewGroup.LayoutParams params = viewGroup.generateLayoutParams(attrs);
            // 递归地加载子View
            rInflateChildren(parser, view, attrs, true);
            viewGroup.addView(view, params);
        }
    }

    if (pendingRequestFocus) {
        parent.restoreDefaultFocus();
    }

    if (finishInflate) {
        parent.onFinishInflate();
    }
}

上面的inflate()和rInflate()方法中都调用了rInflateChildren()方法:

final void rInflateChildren(XmlPullParser parser, View parent, AttributeSet attrs, boolean finishInflate) throws XmlPullParserException, IOException {
    rInflate(parser, parent, parent.getContext(), attrs, finishInflate);
}

View的绘制

ViewRoot

View的绘制是由ViewRootImpl负责的。
每个应用窗口window的decorView都有一个ViewRootImpl与之关联,他们之间由WindowManager(确切来说WindowManger接口的实现类WindowManagerImpl,继而调用WindowManagerGlobal类)来维护关系。当ActivityThread调用handleResumeActivity()时,相当于调用了activity的onResume(),decorView与ViewRootImpl建立联系:WindowManager.addView--WindowManagerImpl.addView--WindowManagerGlobal.addView:

public void addView(View view, ViewGroup.LayoutParams params,
        Display display, Window parentWindow) {
        ...
        root = new ViewRootImpl(view.getContext(), display);

        view.setLayoutParams(wparams);

        mViews.add(view);
        mRoots.add(root);
        mParams.add(wparams);

        // do this last because it fires off messages to start doing things
        try {
            root.setView(view, wparams, panelParentView);
        } catch (RuntimeException e) {
            ...
        }
}

View的绘制是由ViewRootImpl完成,setView内部会调用requestLayout()完成异步刷新请求。

public void setView(View view, WindowManager.LayoutParams attrs, 
          View panelParentView) {
       ...
       // Schedule the first layout -before- adding to the window
       // manager, to make sure we do the relayout before receiving
       // any other events from the system.
       requestLayout();
       ...
}


@Override
public void requestLayout() {
    if (!mHandlingLayoutInLayoutRequest) {
        checkThread();
        mLayoutRequested = true;
        //View绘制入口
        scheduleTraversals();
    }
}

具体细节需要了解Activity启动流程。

View绘制起点

scheduleTraversals()方法来调度一次完成的绘制流程,向主线程发送一个遍历消息,最终调用ViewRootImpl的performTraversals()调用:

private void performTraversals() {
       ...
       performMeasure(childWidthMeasureSpec, childHeightMeasureSpec);
       ...
       performLayout(lp, mWidth, mHeight);
       ...
       performDraw();
       ...
}
  • measure: 判断是否需要重新计算View的大小,需要的话则计算;
  • layout: 判断是否需要重新计算View的位置,需要的话则计算;
  • draw: 判断是否需要重新绘制View,需要的话则重绘制。

measure阶段

计算每个view需要多大尺寸。
performTraversals()中通过measureHierarchy(),计算出根view的measureSpec,随后调用performMeasure()、onMeasure()计算各层次veiw的大小。

// 传入的desiredWindowXxx为窗口尺寸
private boolean measureHierarchy(final View host, final WindowManager.LayoutParams lp,
        final Resources res, 
        final int desiredWindowWidth, final int desiredWindowHeight) {
    int childWidthMeasureSpec;
    int childHeightMeasureSpec;
    boolean windowSizeMayChange = false;
    ...
    boolean goodMeasure = false;
    ...
    if (!goodMeasure) {
        //获取根的measureSpec信息,约束了decorView的宽高
        childWidthMeasureSpec = getRootMeasureSpec(desiredWindowWidth, lp.width);
        childHeightMeasureSpec = getRootMeasureSpec(desiredWindowHeight, lp.height);
        performMeasure(childWidthMeasureSpec, childHeightMeasureSpec);
        if (mWidth != host.getMeasuredWidth() || mHeight != host.getMeasuredHeight()) {
            windowSizeMayChange = true;
        }
    }
    ...
    return windowSizeMayChange;
}

最终,获取到viewRoot的width黑height的MeasureSpec后,传给performMeasure()。spectMode为EXACTLY,spectSize为window尺寸。

private void performMeasure(int childWidthMeasureSpec, int childHeightMeasureSpec) {
    if (mView == null) {
        return;
    }
    Trace.traceBegin(Trace.TRACE_TAG_VIEW, "measure");
    try {
        mView.measure(childWidthMeasureSpec, childHeightMeasureSpec);
    } finally {
        Trace.traceEnd(Trace.TRACE_TAG_VIEW);
    }
}

mView即为decorView,执行View.measure()这个不可继承的final方法。

/**
 * 调用这个方法来算出一个View应该为多大。参数为父View对其宽高的约束信息。
 * 实际的测量工作在onMeasure()方法中进行
*/
public final void measure(int widthMeasureSpec, int heightMeasureSpec) {
    // 判断是否需要重新计算measureSpec
    boolean optical = isLayoutModeOptical(this);
    if (optical != isLayoutModeOptical(mParent)) {
        Insets insets = getOpticalInsets();
        int oWidth  = insets.left + insets.right;
        int oHeight = insets.top  + insets.bottom;
        widthMeasureSpec  = MeasureSpec.adjust(widthMeasureSpec,  optical ? -oWidth  : oWidth);
        heightMeasureSpec = MeasureSpec.adjust(heightMeasureSpec, optical ? -oHeight : oHeight);
    }

    // Suppress sign extension for the low bytes
    long key = (long) widthMeasureSpec << 32 | (long) heightMeasureSpec & 0xffffffffL;
    if (mMeasureCache == null) mMeasureCache = new LongSparseLongArray(2);

    // 若mPrivateFlags中包含PFLAG_FORCE_LAYOUT标记,则强制重新布局
    // 比如调用View.requestLayout()会在mPrivateFlags中加入此标记
    final boolean forceLayout = (mPrivateFlags & PFLAG_FORCE_LAYOUT) == PFLAG_FORCE_LAYOUT;

    // Optimize layout by avoiding an extra EXACTLY pass when the view is
    // already measured as the correct size. In API 23 and below, this
    // extra pass is required to make LinearLayout re-distribute weight.
    final boolean specChanged = widthMeasureSpec != mOldWidthMeasureSpec
            || heightMeasureSpec != mOldHeightMeasureSpec;
    final boolean isSpecExactly = MeasureSpec.getMode(widthMeasureSpec) == MeasureSpec.EXACTLY
            && MeasureSpec.getMode(heightMeasureSpec) == MeasureSpec.EXACTLY;
    final boolean matchesSpecSize = getMeasuredWidth() == MeasureSpec.getSize(widthMeasureSpec)
            && getMeasuredHeight() == MeasureSpec.getSize(heightMeasureSpec);
    final boolean needsLayout = specChanged
            && (sAlwaysRemeasureExactly || !isSpecExactly || !matchesSpecSize);

    // 需要重新布局
    if (forceLayout || needsLayout) {
        // first clears the measured dimension flag
        mPrivateFlags &= ~PFLAG_MEASURED_DIMENSION_SET;

        resolveRtlPropertiesIfNeeded();
        // 先尝试从缓从中获取,若forceLayout为true或是缓存中不存在或是
        // 忽略缓存,则调用onMeasure()重新进行测量工作
        int cacheIndex = forceLayout ? -1 : mMeasureCache.indexOfKey(key);
        if (cacheIndex < 0 || sIgnoreMeasureCache) {
            // measure ourselves, this should set the measured dimension flag back
            onMeasure(widthMeasureSpec, heightMeasureSpec);
            mPrivateFlags3 &= ~PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT;
        } else {
            // 缓存命中,直接从缓存中取值即可,不必再测量
            long value = mMeasureCache.valueAt(cacheIndex);
            // Casting a long to int drops the high 32 bits, no mask needed
            setMeasuredDimensionRaw((int) (value >> 32), (int) value);
            mPrivateFlags3 |= PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT;
        }

        // flag not set, setMeasuredDimension() was not invoked, we raise
        // an exception to warn the developer
        if ((mPrivateFlags & PFLAG_MEASURED_DIMENSION_SET) != PFLAG_MEASURED_DIMENSION_SET) {
            throw new IllegalStateException("View with id " + getId() + ": "
                    + getClass().getName() + "#onMeasure() did not set the"
                    + " measured dimension by calling"
                    + " setMeasuredDimension()");
        }

        mPrivateFlags |= PFLAG_LAYOUT_REQUIRED;
    }

    mOldWidthMeasureSpec = widthMeasureSpec;
    mOldHeightMeasureSpec = heightMeasureSpec;

    mMeasureCache.put(key, ((long) mMeasuredWidth) << 32 |
            (long) mMeasuredHeight & 0xffffffffL); // suppress sign extension
}
  • forceLayout为true,表示强制重新布局,可以通过View.requestLayout()来实现;

  • needsLayout为true,这需要specChanged为true(表示本次传入的MeasureSpec与上次传入的不同),并且以下三个条件之一成立:

    • sAlwaysRemeasureExactly为true: 该变量默认为false;
    • isSpecExactly为false: 若父View对子View提出了精确的宽高约束,则该变量为true,否则为false;
    • matchesSpecSize为false: 表示父View的宽高尺寸要求与上次测量的结果不同。

对于decorView来说,实际执行测量工作的是FrameLayout的onMeasure()方法。View.onMeasure():

protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
    setMeasuredDimension(getDefaultSize(getSuggestedMinimumWidth(), widthMeasureSpec),
            getDefaultSize(getSuggestedMinimumHeight(), heightMeasureSpec));
}

而FrameLayout.onMeasure():

@Override
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
    int count = getChildCount();

    final boolean measureMatchParentChildren =
            MeasureSpec.getMode(widthMeasureSpec) != MeasureSpec.EXACTLY ||
            MeasureSpec.getMode(heightMeasureSpec) != MeasureSpec.EXACTLY;
    mMatchParentChildren.clear();

    int maxHeight = 0;
    int maxWidth = 0;
    int childState = 0;

    //每一个子view最大宽度和最大高度
    for (int i = 0; i < count; i++) {
        final View child = getChildAt(i);
        if (mMeasureAllChildren || child.getVisibility() != GONE) {
            measureChildWithMargins(child, widthMeasureSpec, 0, heightMeasureSpec, 0);
            final LayoutParams lp = (LayoutParams) child.getLayoutParams();
            maxWidth = Math.max(maxWidth,
                    child.getMeasuredWidth() + lp.leftMargin + lp.rightMargin);
            maxHeight = Math.max(maxHeight,
                    child.getMeasuredHeight() + lp.topMargin + lp.bottomMargin);
            childState = combineMeasuredStates(childState, child.getMeasuredState());
            if (measureMatchParentChildren) {
                if (lp.width == LayoutParams.MATCH_PARENT ||
                        lp.height == LayoutParams.MATCH_PARENT) {
                    mMatchParentChildren.add(child);
                }
            }
        }
    }

    // Account for padding too
    // 最大宽度、高度加上父view和前景区域的padding
    maxWidth += getPaddingLeftWithForeground() + getPaddingRightWithForeground();
    maxHeight += getPaddingTopWithForeground() + getPaddingBottomWithForeground();

    // Check against our minimum height and width
    // 是否设置了最小高宽,最大的那个设置为最大高宽
    maxHeight = Math.max(maxHeight, getSuggestedMinimumHeight());
    maxWidth = Math.max(maxWidth, getSuggestedMinimumWidth());

    // Check against our foreground's minimum height and width
    // 检查前景图像的最小宽高
    final Drawable drawable = getForeground();
    if (drawable != null) {
        maxHeight = Math.max(maxHeight, drawable.getMinimumHeight());
        maxWidth = Math.max(maxWidth, drawable.getMinimumWidth());
    }

    setMeasuredDimension(resolveSizeAndState(maxWidth, widthMeasureSpec, childState),
            resolveSizeAndState(maxHeight, heightMeasureSpec,
                    childState << MEASURED_HEIGHT_STATE_SHIFT));

    count = mMatchParentChildren.size();
    if (count > 1) {
        for (int i = 0; i < count; i++) {
            final View child = mMatchParentChildren.get(i);
            final MarginLayoutParams lp = (MarginLayoutParams) child.getLayoutParams();

            final int childWidthMeasureSpec;
            if (lp.width == LayoutParams.MATCH_PARENT) {
                final int width = Math.max(0, getMeasuredWidth()
                        - getPaddingLeftWithForeground() - getPaddingRightWithForeground()
                        - lp.leftMargin - lp.rightMargin);
                childWidthMeasureSpec = MeasureSpec.makeMeasureSpec(
                        width, MeasureSpec.EXACTLY);
            } else {
                childWidthMeasureSpec = getChildMeasureSpec(widthMeasureSpec,
                        getPaddingLeftWithForeground() + getPaddingRightWithForeground() +
                        lp.leftMargin + lp.rightMargin,
                        lp.width);
            }

            final int childHeightMeasureSpec;
            if (lp.height == LayoutParams.MATCH_PARENT) {
                final int height = Math.max(0, getMeasuredHeight()
                        - getPaddingTopWithForeground() - getPaddingBottomWithForeground()
                        - lp.topMargin - lp.bottomMargin);
                childHeightMeasureSpec = MeasureSpec.makeMeasureSpec(
                        height, MeasureSpec.EXACTLY);
            } else {
                childHeightMeasureSpec = getChildMeasureSpec(heightMeasureSpec,
                        getPaddingTopWithForeground() + getPaddingBottomWithForeground() +
                        lp.topMargin + lp.bottomMargin,
                        lp.height);
            }

            child.measure(childWidthMeasureSpec, childHeightMeasureSpec);
        }
    }
}

FrameLayout是ViewGroup子类,而ViewGroup中有一个View[]类型成员变量mChildren,代表当前viewGroup的所有子view的集合,该变量为private,但是可以通过publish的getChildAt(int position)获取到View[position]的子view,以及getChildCount()获取所有子view数量。

  1. 通过getChildAt()获取到每一个子view,随后measureChildWithMargins()对每一个子view进行测量,计算出所有子view中,最大宽度和最大高度,加上父View的padding和前景区域的padding,然后会检查是否设置了最小宽高,并与其比较,将两者中较大的设为最终的最大宽高。最后,若设置了前景图像,我们还要检查前景图像的最小宽高。
  2. 得到了maxHeight和maxWidth的最终值,表示当前容器View用这个尺寸就能够正常显示其所有子View(同时考虑了padding和margin)。而后我们需要调用resolveSizeAndState()方法来结合传来的MeasureSpec来获取最终的测量宽高,并保存到mMeasuredWidth与mMeasuredHeight成员变量中。
  3. 我们可以看到,容器View通过measureChildWithMargins()方法对所有子View进行测量后,才能得到自身的测量结果。也就是说,对于ViewGroup及其子类来说,要先完成子View的测量,再进行自身的测量(考虑进padding等)。
protected void measureChildWithMargins(View child,
        int parentWidthMeasureSpec, int widthUsed,
        int parentHeightMeasureSpec, int heightUsed) {
    final MarginLayoutParams lp = (MarginLayoutParams) child.getLayoutParams();

    final int childWidthMeasureSpec = getChildMeasureSpec(parentWidthMeasureSpec,
            mPaddingLeft + mPaddingRight + lp.leftMargin + lp.rightMargin
                    + widthUsed, lp.width);
    final int childHeightMeasureSpec = getChildMeasureSpec(parentHeightMeasureSpec,
            mPaddingTop + mPaddingBottom + lp.topMargin + lp.bottomMargin
                    + heightUsed, lp.height);

    child.measure(childWidthMeasureSpec, childHeightMeasureSpec);
}

最终,子view的测量时通过子view自身child.measure()完成的。子view测量需要自身的measureSpec,这个就需要父view的measureSpec和子view自身的layoutParams参数决定,子view的layoutParams代表着子view自身期待的大小。getChildMeasureSpec():

public static int getChildMeasureSpec(int spec, int padding, int childDimension) {
    int specMode = MeasureSpec.getMode(spec);
    int specSize = MeasureSpec.getSize(spec);

    int size = Math.max(0, specSize - padding);

    int resultSize = 0;
    int resultMode = 0;

    switch (specMode) {
    // Parent has imposed an exact size on us
    case MeasureSpec.EXACTLY:
        if (childDimension >= 0) {
            resultSize = childDimension;
            resultMode = MeasureSpec.EXACTLY;
        } else if (childDimension == LayoutParams.MATCH_PARENT) {
            // Child wants to be our size. So be it.
            resultSize = size;
            resultMode = MeasureSpec.EXACTLY;
        } else if (childDimension == LayoutParams.WRAP_CONTENT) {
            // Child wants to determine its own size. It can't be
            // bigger than us.
            resultSize = size;
            resultMode = MeasureSpec.AT_MOST;
        }
        break;

    // Parent has imposed a maximum size on us
    case MeasureSpec.AT_MOST:
        if (childDimension >= 0) {
            // Child wants a specific size... so be it
            resultSize = childDimension;
            resultMode = MeasureSpec.EXACTLY;
        } else if (childDimension == LayoutParams.MATCH_PARENT) {
            // Child wants to be our size, but our size is not fixed.
            // Constrain child to not be bigger than us.
            resultSize = size;
            resultMode = MeasureSpec.AT_MOST;
        } else if (childDimension == LayoutParams.WRAP_CONTENT) {
            // Child wants to determine its own size. It can't be
            // bigger than us.
            resultSize = size;
            resultMode = MeasureSpec.AT_MOST;
        }
        break;

    // Parent asked to see how big we want to be
    case MeasureSpec.UNSPECIFIED:
        if (childDimension >= 0) {
            // Child wants a specific size... let him have it
            resultSize = childDimension;
            resultMode = MeasureSpec.EXACTLY;
        } else if (childDimension == LayoutParams.MATCH_PARENT) {
            // Child wants to be our size... find out how big it should
            // be
            resultSize = View.sUseZeroUnspecifiedMeasureSpec ? 0 : size;
            resultMode = MeasureSpec.UNSPECIFIED;
        } else if (childDimension == LayoutParams.WRAP_CONTENT) {
            // Child wants to determine its own size.... find out how
            // big it should be
            resultSize = View.sUseZeroUnspecifiedMeasureSpec ? 0 : size;
            resultMode = MeasureSpec.UNSPECIFIED;
        }
        break;
    }
    //noinspection ResourceType
    return MeasureSpec.makeMeasureSpec(resultSize, resultMode);
}

首先,根据父view的measureSpec算出specMode和specSize,在计算出父view留给子view的最大可用空间size。

  1. SpecMode为EXACTLY,表示父View对子View指定了确切的宽高限制,此时子View的LayoutParams:
    • childDimension为具体大小:子view的resultSize为childDimension,即子View在LayoutParams指定的具体大小值;SpecMode为EXACTLY,即这种情况下若该子View为容器View,它也有能力给其子View指定确切的宽高限制(子View只能在这个宽高范围内),若为普通View,它的最终测量大小就为childDimension
    • childDimension为match_parent:表示子View想和父View一样大。SpecSize为size,即父View的剩余可用大小;SpecMode为EXACTLY
    • childDimension为wrap_content:表示子View想自己决定自己的尺寸(根据其内容的大小动态决定)。这种情况下子View的确切测量大小只能在其本身的onMeasure()方法中计算得出,父View此时无从知晓。所以暂时将子View的SpecSize设为size(父View的剩余大小);令子View的SpecMode为AT_MOST,表示了若子View为ViewGroup,它没有能力给其子View指定确切的宽高限制,毕竟它本身的测量宽高还悬而未定。
  2. SpecMode为AT_MOST:
    • childDimension为具体大小:子View的SpecSize为childDimension,SpecMode为EXACTLY
    • childDimension为match_parent:表示子View想和父View一样大,故令子View的SpecSize为size,但是由于父View本身的测量宽高还无从确定,所以只是暂时令子View的测量结果为父View目前的可用大小。这时令子View的SpecMode为AT_MOST。
    • childDimension为wrap_content:表示子View想自己决定大小(根据其内容动态确定)。然而这时父View还无法确定其自身的测量宽高,所以暂时令子View的SpecSize为size,SpecMode为AT_MOST。

结论:当子View的测量结果能够确定时,子View的SpecMode就为EXACTLY;当子View的测量结果还不能确定(只是暂时设为某个值)时,子View的SpecMode为AT_MOST。
(可参考一张表格,自行谷歌)

子view层层遍历,调用measure(),完成测量。当递归地执行完所有子View的测量工作后,会调用resolveSizeAndState()方法来根据之前的测量结果确定最终对FrameLayout的测量结果并存储起来。

public static int resolveSizeAndState(int size, int measureSpec, int childMeasuredState) {
    final int specMode = MeasureSpec.getMode(measureSpec);
    final int specSize = MeasureSpec.getSize(measureSpec);
    final int result;
    switch (specMode) {
        case MeasureSpec.AT_MOST:
            if (specSize < size) {
                // 父View给定的最大尺寸小于完全显示内容所需尺寸
                // 则在测量结果上加上MEASURED_STATE_TOO_SMALL
                result = specSize | MEASURED_STATE_TOO_SMALL;
            } else {
                result = size;
            }
            break;
        // 若specMode为EXACTLY,则不考虑size,result直接赋值为specSize
        case MeasureSpec.EXACTLY:
            result = specSize;
            break;
        case MeasureSpec.UNSPECIFIED:
        default:
            result = size;
    }
    return result | (childMeasuredState & MEASURED_STATE_MASK);
}

上面介绍的onMeasure()是FrameLayout的,而普通view的onMeasure():

protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
      setMeasuredDimension(getDefaultSize(getSuggestedMinimumWidth(), widthMeasureSpec),
             getDefaultSize(getSuggestedMinimumHeight(), heightMeasureSpec));
}

普通View(非ViewgGroup)来说,只需完成自身的测量工作即可。

public static int getDefaultSize(int size, int measureSpec) {
    int result = size;
    int specMode = MeasureSpec.getMode(measureSpec);
    int specSize = MeasureSpec.getSize(measureSpec);

    switch (specMode) {
    case MeasureSpec.UNSPECIFIED:
        result = size;
        break;
    case MeasureSpec.AT_MOST:
    case MeasureSpec.EXACTLY:
        result = specSize;
        break;
    }
    return result;
}

View的getDefaultSize()方法对于AT_MOST和EXACTLY这两种情况都返回了SpecSize作为result。所以若我们的自定义View直接继承了View类,我们就要自己对wrap_content (对应了AT_MOST)这种情况进行处理,否则对自定义View指定wrap_content就和match_parent效果一样了。—— 自定义View的注意事项

但是如果是View的派生类,如TextView、Button、ImageView等,它们的onMeasure方法系统了都做了重写,不会这么简单直接拿 MeasureSpec 的size来当大小,而去会先去测量字符或者图片的高度等,然后拿到View本身content这个高度(字符高度等),如果MeasureSpec是AT_MOST,而且View本身content的高度不超出MeasureSpec的size,那么可以直接用View本身content的高度(字符高度等),而不是像View.java 直接用MeasureSpec的size做为View的大小。

layout阶段

DecorView继承自FrameLayout,onLayout()会执行super().onLayout()。FrameLayout的onLayout类似于onMeasure,getChildAt()获得child,调用每个child的layout()。

View.layout()
public void layout(int l, int t, int r, int b) {
    ...
    boolean changed = isLayoutModeOptical(mParent) ?
            setOpticalFrame(l, t, r, b) : setFrame(l, t, r, b);

    if (changed || (mPrivateFlags & PFLAG_LAYOUT_REQUIRED) == PFLAG_LAYOUT_REQUIRED) {
        onLayout(changed, l, t, r, b);
        ...
    }
    ...
}

setFrame()方法四个参数描述了View相对其父View的位置,setFrame()方法中会判断View的位置是否发生了改变,若发生了改变,则需要对子View进行重新布局,changed。

protected boolean setFrame(int left, int top, int right, int bottom) {
    boolean changed = false;

    if (mLeft != left || mRight != right || mTop != top || mBottom != bottom) {
        changed = true;

        // Remember our drawn bit
        int drawn = mPrivateFlags & PFLAG_DRAWN;

        int oldWidth = mRight - mLeft;
        int oldHeight = mBottom - mTop;
        int newWidth = right - left;
        int newHeight = bottom - top;
        boolean sizeChanged = (newWidth != oldWidth) || (newHeight != oldHeight);

        // Invalidate our old position
        invalidate(sizeChanged);
        ...
    }
    return changed;
}

子view布局通过onLayout()实现,普通View( 非ViewGroup)不含子View,所以View类的onLayout()方法为空。

protected void onLayout(boolean changed, int left, int top, int right, int bottom) {

}
ViewGroup.layout()
@Override
public final void layout(int l, int t, int r, int b) {
    if (!mSuppressLayout && (mTransition == null || !mTransition.isChangingLayout())) {
        if (mTransition != null) {
            mTransition.layoutChange(this);
        }
        super.layout(l, t, r, b);
    } else {
        // record the fact that we noop'd it; request layout when transition finishes
        mLayoutCalledWhileSuppressed = true;
    }
}

LayoutTransition是用于处理ViewGroup增加和删除子视图的动画效果,也就是说如果当前ViewGroup未添加LayoutTransition动画,或者LayoutTransition动画此刻并未运行,那么调用super.layout(l, t, r, b),继而调用到ViewGroup中的onLayout,否则将mLayoutSuppressed设置为true,等待动画完成时再调用requestLayout()

ViewGroup.onLayout()

ViewGroup类的onLayout()方法是abstract,不同的布局管理器有着不同的布局方式。

decorView,即FrameLayout的onLayout():

@Override
protected void onLayout(boolean changed, int left, int top, int right, int bottom) {
    layoutChildren(left, top, right, bottom, false /* no force left gravity */);
}

void layoutChildren(int left, int top, int right, int bottom, boolean forceLeftGravity) {
    final int count = getChildCount();

    final int parentLeft = getPaddingLeftWithForeground();
    final int parentRight = right - left - getPaddingRightWithForeground();

    final int parentTop = getPaddingTopWithForeground();
    final int parentBottom = bottom - top - getPaddingBottomWithForeground();

    for (int i = 0; i < count; i++) {
        final View child = getChildAt(i);
        if (child.getVisibility() != GONE) {
            final LayoutParams lp = (LayoutParams) child.getLayoutParams();

            final int width = child.getMeasuredWidth();
            final int height = child.getMeasuredHeight();

            int childLeft;
            int childTop;

            int gravity = lp.gravity;
            if (gravity == -1) {
                gravity = DEFAULT_CHILD_GRAVITY;
            }

            final int layoutDirection = getLayoutDirection();
            final int absoluteGravity = Gravity.getAbsoluteGravity(gravity, layoutDirection);
            final int verticalGravity = gravity & Gravity.VERTICAL_GRAVITY_MASK;

            switch (absoluteGravity & Gravity.HORIZONTAL_GRAVITY_MASK) {
                case Gravity.CENTER_HORIZONTAL:
                    childLeft = parentLeft + (parentRight - parentLeft - width) / 2 +
                    lp.leftMargin - lp.rightMargin;
                    break;
                case Gravity.RIGHT:
                    if (!forceLeftGravity) {
                        childLeft = parentRight - width - lp.rightMargin;
                        break;
                    }
                case Gravity.LEFT:
                default:
                    childLeft = parentLeft + lp.leftMargin;
            }

            switch (verticalGravity) {
                case Gravity.TOP:
                    childTop = parentTop + lp.topMargin;
                    break;
                case Gravity.CENTER_VERTICAL:
                    childTop = parentTop + (parentBottom - parentTop - height) / 2 +
                    lp.topMargin - lp.bottomMargin;
                    break;
                case Gravity.BOTTOM:
                    childTop = parentBottom - height - lp.bottomMargin;
                    break;
                default:
                    childTop = parentTop + lp.topMargin;
            }

            child.layout(childLeft, childTop, childLeft + width, childTop + height);
        }
    }
}
  • parentLeft为子View显示区域的左边缘到父View的左边缘的距离,根据父view的padding值确定。
  • 子View的可见性不为GONE才会进行布局
  • childLeft代表了最终子View的左边缘距父View左边缘的距离,由parentLeft,即父view的padding,和子view的margin,以及view自身宽度等因素计算而成。不过不同的verticalGravity、absoluteGravity等形式,计算法师不同
  • childTop同理。
  • 最后会调用child.layout()方法对子View的位置参数进行设置,若子View是容器View,则会递归地对其子View进行布局。

draw()

decorView.draw()继承View.draw()

public void draw(Canvas canvas) {
    . . . 
    // 绘制背景,只有dirtyOpaque为false时才进行绘制,下同
    int saveCount;
    if (!dirtyOpaque) {
        drawBackground(canvas);
    }
    . . . 
    // 绘制自身内容
    if (!dirtyOpaque) onDraw(canvas);

    // 绘制子View
    dispatchDraw(canvas);

     . . .
    // 绘制滚动条等
    onDrawForeground(canvas);
 }

省略了实现滑动时渐变边框效果相关的逻辑

  • View类的onDraw()方法为空,因为每个View绘制自身的方式都不尽相同,对于decorView来说,由于它是容器View,所以它本身并没有什么要绘制的。

  • dispatchDraw()方法用于绘制子View,显然普通View(非ViewGroup)并不能包含子View,所以View类中这个方法的实现为空。ViewGroup类的dispatchDraw()方法中会依次调用drawChild()方法来绘制子View

    protected boolean drawChild(Canvas canvas, View child, long drawingTime) {
        return child.draw(canvas, this, drawingTime);
    }
    

这个方法调用了View.draw(Canvas, ViewGroup,long)方法来对子View进行绘制。在draw(Canvas, ViewGroup, long)方法中,首先对canvas进行了一系列变换,以变换到将要被绘制的View的坐标系下。完成对canvas的变换后,便会调用View.draw(Canvas)方法进行实际的绘制工作,此时传入的canvas为经过变换的,在将被绘制View的坐标系下的canvas。

进入到View.draw(Canvas)方法后,会向之前介绍的一样,执行以下几步:

  • 绘制背景;
  • 通过onDraw()绘制自身内容;
  • 通过dispatchDraw()绘制子View;
  • 绘制滚动条
Andorid的View绘制流程_第2张图片

参考:深入理解Android之View的绘制流程
           Android View的绘制流程

你可能感兴趣的:(Andorid的View绘制流程)