- 机器学习是怎么一步一步由神经网络发展到今天的Transformer架构的?
yuanpan
机器学习神经网络transformer
机器学习和神经网络的发展经历了一系列重要的架构和技术阶段。以下是更全面的总结,涵盖了从早期神经网络到卷积神经网络之前的架构演变:1.早期神经网络:感知机(Perceptron)时间:1950年代末至1960年代。背景:感知机由FrankRosenblatt提出,是第一个具有学习能力的神经网络模型。它由单层神经元组成,可以用于简单的二分类任务。特点:输入层和输出层之间直接连接,没有隐藏层。使用简单的
- EN 71-3测试
南京速跃检测技术服务有限公司
学习方法创业创新
以下是关于EN71-3测试的深度解读,结合法规背景、测试方法及实际应用进行结构化分析:一、EN71-3测试的核心目的EN71-3是欧盟《玩具安全指令》的第三部分,专门针对玩具材料中可迁移有害元素的限量要求,旨在模拟儿童误吞玩具材料后,重金属在胃液环境中的溶出风险,确保玩具化学安全性。二、测试方法与流程1.模拟消化环境-将玩具材料样品浸入模拟胃液的盐酸溶液(0.07mol/LHCl),在37℃下持续
- HAL库操作STM32串口
2021.09
STM32-CubeMXstm32单片机arm
本次博客知识来自于韦东山老师的7天物联网课程。一、cubeMX产生工程框架先从左侧选择串口1,再选择异步通信。二、分析程序如下图,cubeMX自动生成了串口初始化函数。三、编写程序以上初始化完成后,就可以使用HAL库提供的“HAL_UART_Transmit()”从串口发送数据,使用“HAL_UART_Receive()”接收数据,但这样使用不方便,需要自己处理数据类型。在学习C语言时,通常使用p
- 10分钟了解基金基础知识
leo_厉锵
金融栏金融
一、基金的本质股票、债券和基金具有一定的可比性,而银行理财产品较为特殊。(一)股票股票代表一个公司的股份。拥有公司股票就相当于拥有部分公司股份。股票投资收益潜力大,因为公司可能是赚钱机器从而导致股价暴涨;但风险也很高,因为公司可能经营不善致使股价暴跌。(二)债券债券代表一种债权,即借钱给别人。例如国债,可理解为国家向你借钱并打借条,约定偿还时间和利息。债券代表着债券关系。(三)基金股票和债券属于直
- 10分钟了解股市基础知识
leo_厉锵
金融栏大数据
一、交易时间周一至周五,法定节假日除外。盘前集合竞价(9:15-9:25),25分开出开盘价。其中15-20分可挂单可撤单,20-25分可挂单不可撤单。盘中连续交易时间为上午9:30-11:30,下午13:00-14:57。尾盘集合竞价时间为14:57-15:00,三分钟可挂单不可撤单,15:00开出收盘价。创业板和科创板在15:05-15:30有盘后交易时间,沪深两市主板无。夜市委托一般为晚上1
- python+flask计算机毕业设计基于Android平台的景区移动端旅游软件系统(程序+开题+论文)
Node.js彤彤 程序
pythonflask课程设计
本系统(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。系统程序文件列表开题报告内容研究背景随着移动互联网技术的飞速发展,智能手机已成为人们日常生活中不可或缺的一部分,特别是在旅游领域,移动端应用以其便捷性、实时性和个性化服务的特点,极大地改变了人们的旅游体验方式。当前,旅游市场日益繁荣,游客对于旅游信息获取、行程规划、景点导航、票务预订及个性化服务的需
- ALO蚁狮优化算法:从背景到实战的全面解析
der丸子吱吱吱
智能优化算法ALO算法
目录引言背景2.1蚁狮优化算法的起源2.2自然启发式算法的背景2.3ALO的发展与应用原理3.1蚁狮的生物行为3.2ALO的数学建模3.3算法流程与关键步骤实战应用4.1函数优化问题4.2工程优化案例4.3组合优化与约束优化代码实现与结果分析5.1Python代码实现5.2实验设计与结果分析5.3性能评估与优化建议学习资源6.1工具推荐6.2网站与文献资源6.3ALO与AI结合的方法结论1.引言在
- 【布鲁姆6大认知层级】
搞技术的季
经验分享
认知思维目标层次由低到高、由简到繁分为六个层次,层层递进,这6个层级分别是:记忆——理解——应用——分析——评价——创新。第一层:记忆是指认识并记忆概念、知识,将其储存在大脑并及时提取,例如背单词、古诗、名词概念等。这一层次所涉及的是具体知识或抽象知识的辨认,虽然机械,但对学习和解决更复杂的问题来说是必不可少的基础环节。第二层:理解是指对事物或知识的领会,当学习者对"新"知识与原有知识产生联系时,
- 【知识管理】
搞技术的季
经验分享
一、概念:知识:公司内部的个体的、部门的、企业的,甚至是行业的不同的知识层次所综合组成的知识网络,包括品牌市场、渠道、知识产权、技术标准、技术秘密、产品附加值、竞争情报等多种内容。知识管理:是传递知识的过程,由于传递人员的经验问题或者知识源的问题,可能导致较大的知识损耗。而知识管理的过程通过对隐性知识的挖掘和一系列知识管理的活动,可以有效提升知识转化的效率,体现企业内知识资产的价值。二、要素和现状
- 故事讲解设计模式:观察者模式
yuanpan
设计模式观察者模式
1.故事背景:在一个小镇上,有一家非常受欢迎的报纸店,老板叫老张。这家报纸店每天都会发布最新的新闻,镇上有很多居民都订阅了这家报纸,他们希望能够第一时间收到最新的消息。2.故事发展:老张的报纸店:老张是报纸店的核心,他负责收集新闻、编辑报纸,并在每天早晨发布。问题:老张需要通知所有订阅者,但订阅者数量可能很多,而且可能会随时增加或减少。订阅者们:镇上有几位居民对新闻非常感兴趣,他们是:小李:喜欢体
- 2025年中央预算内投资专项(第二批)节能降碳申报指南:方向解析、条件详解与实操攻略
卧涛西安17391873147
人工智能大数据物联网制造
核心提示:2025年中央预算内投资专项(第二批)节能降碳项目申报已进入倒计时!本文深度解析申报方向、条件、资金支持比例,并提供七大行业改造实例与申报策略,助您抢占政策红利先机。一、政策背景与申报时效2025年中央预算内投资专项(第二批)节能降碳是国家"双碳"战略落地的关键举措,旨在通过财政支持加速重点领域低碳转型。本批次申报截止日期为本月底,拟申报单位需立即启动材料准备工作。二、三大申报方向深度解
- yum install locate出现Error: Unable to find match: locate解决方案
爱编程的喵喵
Linux解决方案linuxlocateyum解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了yuminstalllocate出现
- 一、大语言模型微调 vs. 大语言模型应用
AI Echoes
深度学习人工智能deepseek机器学习算法
一、大语言模型微调vs.大语言模型应用1.微调(Fine-Tuning)的含义与特点定义与作用微调指在预训练好(通用)的基础模型上,通过在特定领域或任务的数据集上进一步训练来调整模型参数,使其在该领域任务中获得更优表现。这种方法可以使通用模型“定制化”,更好地理解专业术语和领域知识,从而提升准确性和响应质量。例如,为医疗、法律、金融等垂直领域构建专属模型,往往需要在预训练模型基础上进行微调。特点参
- AI实干家:HK深度体验-【外2篇-香港“千年地契”解析之政策背景、优势与投资传承特点】
SZ0771
人工智能
香港的“千年地契”通常指999年租期的地契,这种超长租期在香港土地历史上确实存在,但在现代政策下已不常见。以下从香港土地政策、税收政策、投资价值和家庭传承角度,详细分析“千年地契”与普通租期地契的区别,并探讨太平山物业的情况。一、香港“千年地契”是什么?定义与历史背景香港的“千年地契”实际上是指999年租期的地契,而非真正的永久业权(Freehold)。在法律和实际操作中,999年租期被视为“准永
- LeetCode热题100JS(59/100)第十一天|46|78|17|39|22
Alicesflower
LeetCode热题100JSleetcodejavascript算法
46.全排列题目链接:46.全排列难度:中等刷题状态:2刷新知识:解题过程思考示例1:输入:nums=[1,2,3]输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]题解分析参考题解链接:全排列放下1刷过程/***@param{number[]}nums*@return{number[][]}*///varpermute=function(num
- 一些经纬度知识
AWen_X
Java定位物联网java
1、横纬竖经2、lng经度:-180~180,东经正数,西经负数3、lat纬度:-90~90,北纬正数,南纬负数4、经纬度1度=60分=3600秒5、地球的子午线总长度大约40008km。纬度1度=大约111km纬度1分=大约1.85km纬度1秒=大约30.8m6、中国的经纬度范围大约为:纬度3.86~53.55,经度73.66~135.057、越北面的地方纬度数值越大,越东面的地方经度数值越大N
- 知识图谱在人工智能语义理解与推理中的关键作用及发展研究
@王威&
人工智能
摘要本文聚焦知识图谱,深入剖析其在人工智能语义理解与推理中的核心作用。阐述知识图谱的构建原理、表示方法,分析其在自然语言处理、智能问答系统、推荐系统等多领域助力语义理解与推理的应用,探讨面临的挑战并展望未来发展方向,全面呈现知识图谱对人工智能发展的重要价值与深远影响。一、引言在人工智能追求更精准理解和处理人类语言与知识的进程中,知识图谱成为关键技术。它以结构化形式组织海量知识,揭示实体间复杂关系,
- 领域驱动设计(DDD)与MVC架构:理念对比与架构选择
以恒1
mvc架构
领域驱动设计(DDD)与MVC架构:理念对比与架构选择一、架构之争的本质:业务复杂度驱动技术演进在软件开发领域,没有银弹式的完美架构,只有适合当前业务场景的合理选择。MVC与DDD的区别本质上是业务复杂度与架构响应能力的匹配问题。让我们通过一个真实案例展开思考:案例背景某金融科技公司初期采用MVC架构开发支付系统,随着业务扩展,新增跨境支付、分账系统、风控规则等功能后,代码库逐渐演变成"大泥球"架
- 为什么在Linux系统中,available会比free+buff/cache的总和少很多
fzip
Linuxlinux运维服务器
在Linux系统中,available内存值小于free+buff/cache总和的现象源于内存管理的复杂机制。以下是核心原因及技术细节:一、背景1.现象#1.free-htotalusedfreesharedbuff/cacheavailableMem:503Gi475Gi8.9Gi605Mi18Gi13GiSwap:63Gi12Gi51Gi#2.grep-E'^(MemTotal|MemFre
- 【工具】gdb使用详细介绍
努力努力再努力~~
linux疑难问题排查实战gdblinux问题调试
linux问题排查实战专栏,分享了作为公司专家,在解决内存、性能、各类死机等疑难问题的排查经验,认真学习可以让你在日后工作中大放光彩。前言在工作中,无论是学习代码流程还是问题的定位,GDB都显得尤为重要,多掌握一些命令可以提升我们的效率和解决问题的能力;按照我的理解,对GDB的掌握程度可以分为三种人:基础命令,大家都知道相对高阶一点的,少数人了解,掌握之后可以提升调试解决问题的效率需要结合反汇编、
- AI人工智能 Agent:在赋能传统行业中的应用
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能Agent:在赋能传统行业中的应用1.背景介绍1.1人工智能的发展历程1.1.1人工智能的起源与发展1.1.2人工智能的三次浪潮1.1.3人工智能的现状与挑战1.2传统行业面临的困境1.2.1效率低下1.2.2成本高企1.2.3决策滞后1.3人工智能赋能传统行业的必要性1.3.1提高效率1.3.2降低成本1.3.3优化决策2.核心概念与联系2.1人工智能Agent的定义2.1.1Age
- 办公提效高阶 DeepSeek 提示词,适用于多种 AI 工具
东锋17
人工智能人工智能
1、高效会议管理请根据[会议主题]和[参会人角色]生成会议议程框架,包含会前准备清单(背景材料/数据需求)、会中讨论要点(需决策事项+时间分配)、会后跟进任务表(责任人/DDL),最后用思维导图形式输出。2、周报自动生成基于我本周完成的[任务清单]和[工作数据],请先总结3项核心成果与2个待改进点,再结合OKR目标制定下周工作计划,要求用对比柱状图呈现进度数据,以PPT分页形式输出。3、周报自动生
- Bell-1量子计算机分析:开启量子计算2.0时代的创新引擎
Allen_Lyb
行业智库分析与报告量子计算与量子学习量子计算
Bell-1量子计算机:开启量子计算2.0时代的创新引擎一、引言1.1研究背景在当今科技飞速发展的时代,量子计算作为前沿领域,正深刻地改变着科技格局,引领新一轮科技革命与产业变革。自20世纪80年代量子计算概念被提出以来,历经多年的理论探索与技术攻坚,已取得了众多突破性进展。从最初理论设想的提出,到逐步构建出量子计算机,每一次进展都吸引着全球科学界和产业界的高度关注,其发展历程见证了人类对计算能力
- GreatSQL 为何选择全表扫描而不选索引
数据库mysql
GreatSQL为何选择全表扫描而不选索引1.问题背景在生产环境中,发现某些查询即使有索引,也没有使用索引,反而选择了全表扫描。这种现象的根本原因在于优化器评估索引扫描的成本时,认为使用索引的成本高于全表扫描。2.场景复现2.1环境信息机器IP:192.168.137.120GreatSQL版本:8.0.32-262.2环境准备通过脚本创建了一个包含100万条数据的表,并在age列上创建了索引id
- 如何用大模型评估大模型——PAI-Judge裁判员大语言模型的实现简介
人工智能机器学习大模型llm
背景:为什么需要一个「裁判员大语言模型」?随着大模型(LLM)技术的爆发式应用,如何快速、客观评估模型回复质量成为行业痛点。对于回答客观问题的LLM,目前业内已经有比较成熟的数据集进行效果评测与模型打榜。但是如何对一个开放式生成LLM进行效果评估,尤其在知识问答、客服对话、内容合规、RAG(检索增强生成)等场景中,目前主流的评测方式仍存在一定的局限性:人工标注:成本高昂、效率低下;传统的自动化评估
- 【WinPcap】——ARP欺骗
猫和鱼爪
WinPcap网络协议winpcap网络协议
利用WinPcap的简单ARP欺骗基础知识关于WinPcap在vc的环境搭建关于ARP等结构下图是从TCP/IP详解中摘录的图片:
- 【C++】C++从入门到精通教程(持续更新...)
废人一枚
C++c++开发语言
前言最近在整理之前一些C++资料,重新整理出了一套C++从基础到实践的教程,包含概念、代码、运行结果以及知识点的扩展,感兴趣的后续大家持续关注。以下是更新的文章目录,文章之后整理了一个知识思维导图,看起来比较清楚点。目录1、C++基础知识C++基础知识一个简单的C++程序函数重载引用的概念引用与指针的区别引用作为函数参数引用作为返回值面向对象类的定义类的声明结构体与类的区别inline函数this
- vr中的计算机知识,VR技术基本常识
淡庸
vr中的计算机知识
虚拟现实技术是仿真技术的一个重要方向是仿真技术与计算机图形学人机接口技术多媒体技术传感技术网络技术等多种技术的集合是一门富有挑战性的交叉技术前沿学科和研究领域。虚拟现实技术(VR)主要包括模拟环境、感知、自然技能和传感设备等方面。模拟环境是由计算机生成的、实时动态的三维立体逼真图像。感知是指理想的VR应该具有一切人所具有的感知。除计算机图形技术所生成的视觉感知外,还有听觉、触觉、力觉、运动等感知,
- YOLOv12优化:图像去噪 | AAAI2025 Transformer |一种基于Transformer的盲点网络(TBSN)架构 ,结合空间和通道自注意力层来增强网络能力
AI小怪兽
YOLOv12魔术师YOLOtransformer深度学习人工智能python
提出了一种基于Transformer的盲点网络(TBSN)架构,通过分析和重新设计Transformer运算符以满足盲点要求。TBSN遵循扩张BSN的架构原则,并结合空间和通道自注意力层来增强网络能力。如何使用:1)结合C3k2二次创新使用;2)结合A2C2f二次创新使用;亮点包括:1.提出了一种新的基于Transformer的盲点网络(TBSN)架构;2.引入了知识蒸馏策略来提高计算效率;3.在
- 数智读书笔记系列021《大数据医疗》:探索医疗行业的智能变革
Allen_Lyb
数智读书笔记大数据健康医疗人工智能python
一、书籍介绍《大数据医疗》由徐曼、沈江、余海燕合著,由机械工业出版社出版。徐曼是南开大学商学院副教授,在大数据驱动的智能决策研究领域颇有建树,尤其在大数据驱动的医疗与健康决策方面有着深入研究,曾获天津优秀博士论文、教育部博士研究生新人奖。沈江等作者也在相关学术和实践领域有着丰富的经验和深厚的专业知识。这本书系统且深入地探讨了大数据技术在医疗领域的应用与变革,对推动医疗行业的智能化发展具有重要的理论
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓