- Xilinx Vivado的RTL分析(RTL analysis)、综合(synthesis)和实现
2401_84185145
程序员fpga开发
理论上,FPGA从编程到下载实现预期功能的过程最少仅需要上述7个步骤中的4、5、6和7,即RTL分析、综合、实现和下载。其中的RTL分析、综合、实现的具体含义和区别又是什么?2、RTL分析(RTLanalysis)一般来讲,通常的设计输入都是Verilog、VHDL或者SystemVerilog等硬件描述语言HDL编写的文件,RTL分析这一步就是将HDL语言转化成逻辑电路图的过程。比如HDL语言描
- MasaCtrl:Tuning-free mutual self-attention control for consistent image synthesis and editing
Kun Li
图像视频生成大模型stablediffusion
https://github.com/TencentARC/MasaCtrl/issues/13https://github.com/TencentARC/MasaCtrl/issues/13QuestionaboutMask·Issue#31·TencentARC/MasaCtrl·GitHub
- AIGC:Kolors: Effective Training of Diffusion Model for Photorealistic Text-to-Image Synthesis
微风❤水墨
AIGC
代码:GitHub-Kwai-Kolors/Kolors:KolorsTeam论文:Kolors/imgs/Kolors_paper.pdfatmaster·Kwai-Kolors/Kolors·GitHub模型:huaggingface:https://huggingface.co/Kwai-Kolors/Kolors-diffusersmodelscope:https://modelscope
- 大疆的raw图噪声合成:Towards General Low-Light Raw Noise Synthesis and Modeling
tony365
降噪pytorch计算机视觉人工智能
文章目录TowardsGeneralLow-LightRawNoiseSynthesisandModeling1dd2信号相关噪声建模3信号无关噪声:生成器和一致性损失(L1和vgg内容损失)4判别器5总结TowardsGeneralLow-LightRawNoiseSynthesisandModeling1dd作者说极暗场景下物理方法仿真不好。作者提出的方法,对于信号相关的噪声使用物理方法建模,
- High-Resolution Image Synthesis with Latent Diffusion Models
仁义礼智信达
深度学习扩散模型CVPR超分辨率重建
一、简介标题:High-ResolutionImageSynthesiswithLatentDiffusionModels(https://arxiv.org/pdf/2112.10752.pdf;GitHub-CompVis/latent-diffusion:High-ResolutionImageSynthesiswithLatentDiffusionModels)期刊:CVPR时间:2022
- CVPR 2023: Multiscale Tensor Decomposition and Rendering Equation Encoding for View Synthesis
结构化文摘
人工智能
我们使用以下6个分类标准对本文的研究选题进行分析:1.表示类型连续场景表示(NeRF类):将场景隐式定义为一个连续场,允许在任意点查询。离散场景表示:使用显式3D结构,例如体素或点云。混合表示:结合连续和离散表示的优势。2.表示编码单尺度编码:直接将特征编码到网格或MLP上。多尺度编码:分层结构允许在不同细节级别进行表示,有助于提高效率和高频细节恢复。张量分解:将特征组织成结构化张量,而不是简单的
- 【GigaGAN论文精读】Scaling up GANs for Text-to-Image Synthesis
旋转的油纸伞
人脸相关人工智能从入门到实战深度学习生成模型计算机视觉GANGigaGAN
【GigaGAN论文精读】ScalingupGANsforText-to-ImageSynthesis0、前言Abstract1.Introduction(图放在文末)2.RelatedWorks2.1Text-to-imagesynthesis.2.2GAN-basedimagesynthesis.2.3Super-resolutionforlarge-scaletext-to-imagemod
- Non-Stationary Texture Synthesis by Adversarial Expansion
Longlongaaago
论文机器学习论文gan纹理合成纹理合成
Non-StationaryTextureSynthesisbyAdversarialExpansion1.主要创新点:利用PatchGan,结合风格损失,L1损失,生成非固定纹理。2.对应损失的贡献:对抗损失作为纹理的主要生成L1损失减少噪声和非自然的内容,但是太过平滑风格损失使得图像最终加入更多细节,但是也加入了颜色的扭曲3.网络训练流程:---------------------------
- windows 环境实现文字转语音。
咕噜咕噜_87bc
目前有很多提供语音合成的SDK,比如科大讯飞,百度,腾讯云等。其实windowspowershell里自带语音合成。例如:Add-Type-AssemblyNameSystem.speech;$speak=New-ObjectSystem.Speech.Synthesis.SpeechSynthesizer;$speak.Rate=1;//朗读速度$speak.SetOutputToWaveFil
- 论文阅读,HeteroGen: Automatic Synthesis of Heterogeneous Cache Coherence Protocols(二)
好啊啊啊啊
论文阅读论文阅读异构多核cache一致性
目录一、Article:文献出处(方便再次搜索)(1)作者(2)文献题目(3)文献时间(4)引用二、Data:文献数据(总结归纳,方便理解)(1)背景介绍(2)目的(3)贡献(4)主要实现手段4.1前置知识AMBACHI简介PCIE和CXL缓存一致性协议(CacheCoherencyProtocols)内存一致性模型(MemoryConsistencyModels)4.2复合内存一致性模型comp
- Medical Image Synthesis with Context-Aware Generative Adversarial Networks
22f9d17d554d
摘要计算机断层扫描(CT)对于各种临床应用至关重要,例如放射治疗计划以及PET衰减校正。但是,CT在采集过程中会暴露放射线,这可能对患者造成副作用。与CT相比,磁共振成像(MRI)更安全,并且不涉及任何辐射。因此,近来,对于放射治疗计划的情况,研究人员被极大地动机从同一对象的其对应的MR图像估计CT图像。在本文中,我们提出了一种数据驱动的方法来解决这一具有挑战性的问题。特别是,通过训练性的卷积网络
- 【FPGA开发】Modelsim和Vivado的使用
Include everything
FPGA开发fpga开发
本篇文章包含的内容一、FPGA工程文件结构二、Modelsim的使用三、Vivado的使用3.1建立工程3.2分析RTLANALYSIS3.2.1`.xdc`约束(Constraints)文件的产生3.3综合SYNTHESIS3.4执行IMPLEMENTATION3.5烧录程序3.6程序固化3.6.1SPI约束3.6.2`.bin`文件的产生3.6.3`.mcs`文件的产生3.6.4添加配置的存储
- c语言实现将文本转换为语音,C#文字转换语音朗读或保存MP3、WAV等格式
德川家康薛定谔
c语言实现将文本转换为语音
最近遇到一个需求,需要把文字转换语音,参考很多大佬写的方法,最后经过自己改造实现文字在线朗读、保存MP3、WAV等格式。//需要引用System.Speech程序集//引用usingSystem.Speech.Synthesis;在线朗读代码://////文字在线音频朗读//////朗读文本///publicstaticboolTextRead(stringreadText){varflag=fa
- vivado 制定执行策略
cckkppll
fpga开发
制定执行策略策略是一组到工具的开关,这些开关在预先配置的一组选项中定义用于合成应用程序或在实现期间运行的各种实用程序和程序。每个主要版本都有特定于版本的策略选项。视频:有关更多信息,请参阅以下内容:VivadoDesignSuiteQuickTake视频:创建和管理跑步。从FlowNavigator中选择Settings,选择Synthesis,然后从策略下拉列表,如上图所示,然后单击“确定”。设
- 【论文阅读笔记】Taming Transformers for High-Resolution Image Synthesis
LuH1124
论文阅读笔记论文阅读transformercnn图像生成
TamingTransformersforHigh-ResolutionImageSynthesis记录前置知识AbstractIntroductionRelatedWorkMethodLearninganEffectiveCodebookofImageConstituentsforUseinTransformersLearningtheCompositionofImageswithTransfo
- Vector Quantized Diffusion Model for Text-to-Image Synthesis
努力学图像处理的小菜
扩散模型人工智能计算机视觉
VectorQuantizedDiffusionModelforText-to-ImageSynthesisShuyangGu,UniversityofScienceandTechnologyofChina,Microsoft,CVPR2022,Cited:340,Code,Paper1.前言我们提出了用于文本到图像生成的矢量量化扩散(VectorQuantizedDiffusionModel;V
- 论文学习——Vector Quantized Diffusion Model for Text-to-Image Synthesis
客院载论
音频生成学习
文章目录引言正文Abstract文章的核心VQ潜在空间适合文本转图片生成VQDiffusion的比起自回归和GAN的其他模型的成果IntroductionNLP的成功给图片生成的启发自回归模型的单向误差解释预测误差累积VQDiffusion能够解决预测误差累计和单向误差两个问题解决单向误差的方式——每一次预测都是考虑所有token的上下文信息解决错误累积的方式——使用基于掩码和替换的扩散策略模型测
- Motion generation/synthesis evaluation metrics
Cmy_CTO
CV#MotionGenerationAI(ArtificialIntelligence)算法人工智能计算机视觉
Motiongeneration/synthesiseval_metricsMDMR-precisionandMultimodal-DistFIDDiversityMultiModalityReferenceT2MFIDR-PrecisionDiversityMulti-modalityMulti-modalDistanceA2MFIDRecognitionAccuracyDiversityMul
- c# 语音播报
wangyue4
c#语音识别开发语言
在C#中进行语音播报通常需要使用.NETFramework中的某个语音库或服务。一个常见的选择是使用System.Speech.Synthesis命名空间中的SpeechSynthesizer类,该类提供了文本到语音的转换功能。以下是一个简单的示例,演示如何在C#中使用SpeechSynthesizer进行语音播报:usingSystem;usingSystem.Speech.Synthesis;
- 免费使用支持离线部署使用的 txt2video 文本生成视频大模型(Text-to-Video-Synthesis Model)
代码讲故事
智能工具音视频离线部署大模型生成视频NLPAIGC
免费使用支持离线部署使用的txt2video文本生成视频大模型(Text-to-Video-SynthesisModel)。文本生成视频大模型(Text-to-Video-SynthesisModel)是一种基于深度学习技术的人工智能模型,它可以将自然语言文本描述转换为相应的视频。即通过输入文本描述,自动生成符合描述内容的视频。这些模型使用深度学习技术,并结合计算机视觉和自然语言处理领域的知识,以
- CycleISP: Real Image Restoration via Improved Data Synthesis
木槿qwer
去噪论文深度学习
Abstract1、提出一个模拟ISP处理的模型(模型是怎么构建的?)2、在RAW、sRGB域都能生成图像对,都能做去噪。(它说在真是图像基准数据集上有SOTA效果,不会是DND吧)3、参数量是之前的RAW去噪最佳方法(用的什么方法?)参数的1/51、Introduction(要长脑子了)高层视觉问题:图像分类、目标检测、目标分割底层视觉问题:图像去噪、超分、去模糊本文工作是什么?想在raw图上叠
- NeRF 其一:NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
泠山
#NeRFpythonnerf神经网络
NeRF其一:NeRF:RepresentingScenesasNeuralRadianceFieldsforViewSynthesis1.什么是神经辐射场2.论文简述3.体渲染3.1视线3.2体渲染-连续3.3体渲染-离散4.神经网络与位置编码4.1神经网络4.2视线角度为什么需要视角向量d\boldsymbol{d}d?4.3位置编码为什么需要位置编码?高频与低频NeRF中如何进行位置编码5.
- Tortoise-tts Better speech synthesis through scaling——TTS论文阅读
pied_piperG
论文阅读TTS音频语音合成
笔记地址:https://flowus.cn/share/a79f6286-b48f-42be-8425-2b5d0880c648【FlowUs息流】tortoise论文地址:BetterspeechsynthesisthroughscalingAbstract:自回归变换器和DDPM:自回归变换器(autoregressivetransformers)是一种基于变换器架构的模型,能够处理序列数据
- 【NeRF】NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis论文阅读
气派飞鹰
论文阅读NeRF
文章目录简介创新点神经辐射场场景表示(NeuralRadianceFieldSceneRepresentation)带有辐射场的体渲染(VolumeRenderingwithRadianceFields)优化神经辐射场(OptimizingaNeuralRadianceField)位置编码(Positionalencoding)分层体积采样(Hierarchicalvolumesampling)参
- Deep learning–based MR‐to‐CT synthesis: The influence of varying gradient echo–based MR images as...
22f9d17d554d
2020年运用分割网络做的图像生成,网络:3D-UNet已配准的数据进行实验该实验对输入数据进行配置,从中发现不同配置下的输入数据对实验产生的影响,从而探究影响生成结果的参数。数据:采集人和犬骨盆区域的MR和CT扫描,使用非刚性配准进行配对。数据是配准以后且配对的。数据十分难获取。数据:17个犬类+23个人类实验数据。人类数据:27个病人前列腺癌评估标准:峰值SNR,平均绝对误差和平均误差来重建H
- [VGG团队论文阅读]Free3D: Consistent Novel View Synthesis without 3D Representation
王知为
论文阅读3d
Vedaldi,C.Z.A.(n.d.).Free3D:ConsistentNovelViewSynthesiswithout3DRepresentation.Chuanxiaz.com.https://chuanxiaz.com/free3d/static/videos/Free3D.pdfFree3D:无需3D表示的一致新视角合成VisualGeometryGroup,Universityof
- 【论文精读WACV_2023】FaceOff: A Video-to-Video Face Swapping System
旋转的油纸伞
CVAI换脸faceswapping计算机视觉机器学习论文精读
【论文精读WACV_2023】FaceOff:AVideo-to-VideoFaceSwappingSystem一、前言Abstract1.Introduction2.RelatedWork3.FaceOff:FaceSwappinginvideos3.1.MergingVideosusingQuantizedLatents3.2.Self-supervisedTrainingApproach3.
- 细菌16S rRNA基因测序平台比较
JarySun
1.细菌16SrRNA基因测序平台介绍1.1Roche454测序平台罗氏454测序系统是454生命科学公司推出的454测序技术,是基于焦磷酸测序法的高通量测序系统,开创了第二代测序技术的先河。该技术是通过合成反应而测序(Seqencing-by-synthesis,SBS)的原理进行测序的。原理:GSFLX(+)系统的测序原理是基于焦磷酸测序法,依靠生物发光对DNA序列进行检测。在DNA聚合酶,A
- [SGDiff] A Style Guided Diffusion model for fashion synthesis
52Tiramisu
科研人工智能
Abstract①提出一个风格引导的扩散模型(SGDiff),把图像模态与预训练的t2i模型组合起来。②提出一个数据集SG-Fashion。MethodSGDiffOverview公式含义:在给定时间点t上的输入,目标文本的语义表示,风格表示。通过扩散网络估计该时刻的噪声。输入:①文本text;②风格图像。文本条件通过扩散模型的生成风格条件通过CLIP模型的生成这两个特征在SCA模块中进行特征融合
- Text to image论文精读 TISE (Text-to-Image Synthesis Evaluation):用于文本到图像合成的评估度量工具包
中杯可乐多加冰
文本生成图像text-to-image文本生成图像T2I深度学习计算机视觉GAN
TISE(Text-to-ImageSynthesisEvaluation)是一款用于评估文本生成图像的Python评估工具箱。文章由TanM.Dinh,RangNguyen,andBinh-SonHua等人发表。其以统一的方式促进、倡导公平的评估度量,并为未来的文本到图像综合研究提供可重复的结果。文章链接:https://arxiv.org/abs/2112.01398项目链接:https://
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio