# 导入 pandas 模块
import pandas as pd
# 设置直接显示图片
%matplotlib inline
stock = pd.read_csv('stock.csv', parse_dates=True, index_col='Date')
stock
|
Open |
High |
Low |
Close |
Volume |
---|
Date |
|
|
|
|
|
---|
2017-06-01 |
153.17 |
153.33 |
152.22 |
153.18 |
16404088 |
---|
2017-06-02 |
153.58 |
155.45 |
152.89 |
155.45 |
27770715 |
---|
2017-06-05 |
154.34 |
154.45 |
153.46 |
153.93 |
25331662 |
---|
2017-06-06 |
153.90 |
155.81 |
153.78 |
154.45 |
26624926 |
---|
2017-06-07 |
155.02 |
155.98 |
154.48 |
155.37 |
21069647 |
---|
2017-06-08 |
155.25 |
155.54 |
154.40 |
154.99 |
21250798 |
---|
2017-06-09 |
155.19 |
155.19 |
146.02 |
148.98 |
64882657 |
---|
2017-06-12 |
145.74 |
146.09 |
142.51 |
145.42 |
72307330 |
---|
2017-06-13 |
147.16 |
147.45 |
145.15 |
146.59 |
34165445 |
---|
2017-06-14 |
147.50 |
147.50 |
143.84 |
145.16 |
31531232 |
---|
2017-06-15 |
143.32 |
144.48 |
142.21 |
144.29 |
32165373 |
---|
2017-06-16 |
143.78 |
144.50 |
142.20 |
142.27 |
50361093 |
---|
2017-06-19 |
143.66 |
146.74 |
143.66 |
146.34 |
32541404 |
---|
2017-06-20 |
146.87 |
146.87 |
144.94 |
145.01 |
24900073 |
---|
2017-06-21 |
145.52 |
146.07 |
144.61 |
145.87 |
21265751 |
---|
2017-06-22 |
145.77 |
146.70 |
145.12 |
145.63 |
19106294 |
---|
2017-06-23 |
145.13 |
147.16 |
145.11 |
146.28 |
35439389 |
---|
2017-06-26 |
147.17 |
148.28 |
145.38 |
145.82 |
25692361 |
---|
2017-06-27 |
145.01 |
146.16 |
143.62 |
143.73 |
24761891 |
---|
2017-06-28 |
144.49 |
146.11 |
143.16 |
145.83 |
22082432 |
---|
2017-06-29 |
144.71 |
145.13 |
142.28 |
143.68 |
31499368 |
---|
2017-06-30 |
144.45 |
144.96 |
143.78 |
144.02 |
23024107 |
---|
import pandas as pd
import datetime
import pandas_datareader.data as web
# 设置获取的时间区间
start = datetime.datetime(2017,6,1)
end = datetime.datetime(2017,6,30)
# 从google获取苹果的股票数据
apple = web.DataReader("AAPL", "google", start, end)
---------------------------------------------------------------------------
ModuleNotFoundError Traceback (most recent call last)
in ()
1 import pandas as pd
2 import datetime
----> 3 import pandas_datareader.data as web
4
5 # 设置获取的时间区间
ModuleNotFoundError: No module named 'pandas_datareader'
stock.head()
|
Open |
High |
Low |
Close |
Volume |
---|
Date |
|
|
|
|
|
---|
2017-06-01 |
153.17 |
153.33 |
152.22 |
153.18 |
16404088 |
---|
2017-06-02 |
153.58 |
155.45 |
152.89 |
155.45 |
27770715 |
---|
2017-06-05 |
154.34 |
154.45 |
153.46 |
153.93 |
25331662 |
---|
2017-06-06 |
153.90 |
155.81 |
153.78 |
154.45 |
26624926 |
---|
2017-06-07 |
155.02 |
155.98 |
154.48 |
155.37 |
21069647 |
---|
stock.head(3)
|
Open |
High |
Low |
Close |
Volume |
---|
Date |
|
|
|
|
|
---|
2017-06-01 |
153.17 |
153.33 |
152.22 |
153.18 |
16404088 |
---|
2017-06-02 |
153.58 |
155.45 |
152.89 |
155.45 |
27770715 |
---|
2017-06-05 |
154.34 |
154.45 |
153.46 |
153.93 |
25331662 |
---|
###看尾部5行
stock.tail()
|
Open |
High |
Low |
Close |
Volume |
---|
Date |
|
|
|
|
|
---|
2017-06-26 |
147.17 |
148.28 |
145.38 |
145.82 |
25692361 |
---|
2017-06-27 |
145.01 |
146.16 |
143.62 |
143.73 |
24761891 |
---|
2017-06-28 |
144.49 |
146.11 |
143.16 |
145.83 |
22082432 |
---|
2017-06-29 |
144.71 |
145.13 |
142.28 |
143.68 |
31499368 |
---|
2017-06-30 |
144.45 |
144.96 |
143.78 |
144.02 |
23024107 |
---|
#### 总体信息,没有输括号
stock.info
#### 总体信息
stock.info()
DatetimeIndex: 22 entries, 2017-06-01 to 2017-06-30
Data columns (total 5 columns):
Open 22 non-null float64
High 22 non-null float64
Low 22 non-null float64
Close 22 non-null float64
Volume 22 non-null int64
dtypes: float64(4), int64(1)
memory usage: 1.0 KB
stock.describe()
#### 尝试了不输入圆括号,结果就是显示明细
|
Open |
High |
Low |
Close |
Volume |
---|
count |
22.000000 |
22.000000 |
22.000000 |
22.000000 |
2.200000e+01 |
---|
mean |
148.215000 |
149.088636 |
146.582727 |
147.831364 |
3.109900e+07 |
---|
std |
4.450871 |
4.337027 |
4.507623 |
4.434315 |
1.416738e+07 |
---|
min |
143.320000 |
144.480000 |
142.200000 |
142.270000 |
1.640409e+07 |
---|
25% |
144.785000 |
146.095000 |
143.630000 |
145.047500 |
2.231785e+07 |
---|
50% |
146.320000 |
147.015000 |
145.025000 |
145.850000 |
2.615864e+07 |
---|
75% |
153.477500 |
154.170000 |
150.670000 |
152.130000 |
3.244740e+07 |
---|
max |
155.250000 |
155.980000 |
154.480000 |
155.450000 |
7.230733e+07 |
---|
stock
|
Open |
High |
Low |
Close |
Volume |
---|
Date |
|
|
|
|
|
---|
2017-06-01 |
153.17 |
153.33 |
152.22 |
153.18 |
16404088 |
---|
2017-06-02 |
153.58 |
155.45 |
152.89 |
155.45 |
27770715 |
---|
2017-06-05 |
154.34 |
154.45 |
153.46 |
153.93 |
25331662 |
---|
2017-06-06 |
153.90 |
155.81 |
153.78 |
154.45 |
26624926 |
---|
2017-06-07 |
155.02 |
155.98 |
154.48 |
155.37 |
21069647 |
---|
2017-06-08 |
155.25 |
155.54 |
154.40 |
154.99 |
21250798 |
---|
2017-06-09 |
155.19 |
155.19 |
146.02 |
148.98 |
64882657 |
---|
2017-06-12 |
145.74 |
146.09 |
142.51 |
145.42 |
72307330 |
---|
2017-06-13 |
147.16 |
147.45 |
145.15 |
146.59 |
34165445 |
---|
2017-06-14 |
147.50 |
147.50 |
143.84 |
145.16 |
31531232 |
---|
2017-06-15 |
143.32 |
144.48 |
142.21 |
144.29 |
32165373 |
---|
2017-06-16 |
143.78 |
144.50 |
142.20 |
142.27 |
50361093 |
---|
2017-06-19 |
143.66 |
146.74 |
143.66 |
146.34 |
32541404 |
---|
2017-06-20 |
146.87 |
146.87 |
144.94 |
145.01 |
24900073 |
---|
2017-06-21 |
145.52 |
146.07 |
144.61 |
145.87 |
21265751 |
---|
2017-06-22 |
145.77 |
146.70 |
145.12 |
145.63 |
19106294 |
---|
2017-06-23 |
145.13 |
147.16 |
145.11 |
146.28 |
35439389 |
---|
2017-06-26 |
147.17 |
148.28 |
145.38 |
145.82 |
25692361 |
---|
2017-06-27 |
145.01 |
146.16 |
143.62 |
143.73 |
24761891 |
---|
2017-06-28 |
144.49 |
146.11 |
143.16 |
145.83 |
22082432 |
---|
2017-06-29 |
144.71 |
145.13 |
142.28 |
143.68 |
31499368 |
---|
2017-06-30 |
144.45 |
144.96 |
143.78 |
144.02 |
23024107 |
---|
stock.shape
(22, 5)
stock.columns
Index(['Open', 'High', 'Low', 'Close', 'Volume'], dtype='object')
stock.index
DatetimeIndex(['2017-06-01', '2017-06-02', '2017-06-05', '2017-06-06',
'2017-06-07', '2017-06-08', '2017-06-09', '2017-06-12',
'2017-06-13', '2017-06-14', '2017-06-15', '2017-06-16',
'2017-06-19', '2017-06-20', '2017-06-21', '2017-06-22',
'2017-06-23', '2017-06-26', '2017-06-27', '2017-06-28',
'2017-06-29', '2017-06-30'],
dtype='datetime64[ns]', name='Date', freq=None)
stock.plot()
stock.plot(y='Open')
stock['Close']
Date
2017-06-01 153.18
2017-06-02 155.45
2017-06-05 153.93
2017-06-06 154.45
2017-06-07 155.37
2017-06-08 154.99
2017-06-09 148.98
2017-06-12 145.42
2017-06-13 146.59
2017-06-14 145.16
2017-06-15 144.29
2017-06-16 142.27
2017-06-19 146.34
2017-06-20 145.01
2017-06-21 145.87
2017-06-22 145.63
2017-06-23 146.28
2017-06-26 145.82
2017-06-27 143.73
2017-06-28 145.83
2017-06-29 143.68
2017-06-30 144.02
Name: Close, dtype: float64
stock.Close
Date
2017-06-01 153.18
2017-06-02 155.45
2017-06-05 153.93
2017-06-06 154.45
2017-06-07 155.37
2017-06-08 154.99
2017-06-09 148.98
2017-06-12 145.42
2017-06-13 146.59
2017-06-14 145.16
2017-06-15 144.29
2017-06-16 142.27
2017-06-19 146.34
2017-06-20 145.01
2017-06-21 145.87
2017-06-22 145.63
2017-06-23 146.28
2017-06-26 145.82
2017-06-27 143.73
2017-06-28 145.83
2017-06-29 143.68
2017-06-30 144.02
Name: Close, dtype: float64
stock['Close']['2017-06-01']
153.18000000000001
stock.Close['2017-06-01']
153.18000000000001
stock['Close'][0]
153.18000000000001
stock[['Close']]
|
Close |
---|
Date |
|
---|
2017-06-01 |
153.18 |
---|
2017-06-02 |
155.45 |
---|
2017-06-05 |
153.93 |
---|
2017-06-06 |
154.45 |
---|
2017-06-07 |
155.37 |
---|
2017-06-08 |
154.99 |
---|
2017-06-09 |
148.98 |
---|
2017-06-12 |
145.42 |
---|
2017-06-13 |
146.59 |
---|
2017-06-14 |
145.16 |
---|
2017-06-15 |
144.29 |
---|
2017-06-16 |
142.27 |
---|
2017-06-19 |
146.34 |
---|
2017-06-20 |
145.01 |
---|
2017-06-21 |
145.87 |
---|
2017-06-22 |
145.63 |
---|
2017-06-23 |
146.28 |
---|
2017-06-26 |
145.82 |
---|
2017-06-27 |
143.73 |
---|
2017-06-28 |
145.83 |
---|
2017-06-29 |
143.68 |
---|
2017-06-30 |
144.02 |
---|
stock[['Open','Close']]
|
Open |
Close |
---|
Date |
|
|
---|
2017-06-01 |
153.17 |
153.18 |
---|
2017-06-02 |
153.58 |
155.45 |
---|
2017-06-05 |
154.34 |
153.93 |
---|
2017-06-06 |
153.90 |
154.45 |
---|
2017-06-07 |
155.02 |
155.37 |
---|
2017-06-08 |
155.25 |
154.99 |
---|
2017-06-09 |
155.19 |
148.98 |
---|
2017-06-12 |
145.74 |
145.42 |
---|
2017-06-13 |
147.16 |
146.59 |
---|
2017-06-14 |
147.50 |
145.16 |
---|
2017-06-15 |
143.32 |
144.29 |
---|
2017-06-16 |
143.78 |
142.27 |
---|
2017-06-19 |
143.66 |
146.34 |
---|
2017-06-20 |
146.87 |
145.01 |
---|
2017-06-21 |
145.52 |
145.87 |
---|
2017-06-22 |
145.77 |
145.63 |
---|
2017-06-23 |
145.13 |
146.28 |
---|
2017-06-26 |
147.17 |
145.82 |
---|
2017-06-27 |
145.01 |
143.73 |
---|
2017-06-28 |
144.49 |
145.83 |
---|
2017-06-29 |
144.71 |
143.68 |
---|
2017-06-30 |
144.45 |
144.02 |
---|
stock.loc['2017-06-01', 'Close']
153.18000000000001
stock.loc[:, 'Close']
Date
2017-06-01 153.18
2017-06-02 155.45
2017-06-05 153.93
2017-06-06 154.45
2017-06-07 155.37
2017-06-08 154.99
2017-06-09 148.98
2017-06-12 145.42
2017-06-13 146.59
2017-06-14 145.16
2017-06-15 144.29
2017-06-16 142.27
2017-06-19 146.34
2017-06-20 145.01
2017-06-21 145.87
2017-06-22 145.63
2017-06-23 146.28
2017-06-26 145.82
2017-06-27 143.73
2017-06-28 145.83
2017-06-29 143.68
2017-06-30 144.02
Name: Close, dtype: float64
stock.loc['2017-06-01':'2017-06-05', 'Close']
Date
2017-06-01 153.18
2017-06-02 155.45
2017-06-05 153.93
Name: Close, dtype: float64
stock.loc['2017-06-01':'2017-06-05', 'Open':'Close']
|
Open |
High |
Low |
Close |
---|
Date |
|
|
|
|
---|
2017-06-01 |
153.17 |
153.33 |
152.22 |
153.18 |
---|
2017-06-02 |
153.58 |
155.45 |
152.89 |
155.45 |
---|
2017-06-05 |
154.34 |
154.45 |
153.46 |
153.93 |
---|
stock.loc['2017-06-01':'2017-06-05', ['Open', 'Close']]
|
Open |
Close |
---|
Date |
|
|
---|
2017-06-01 |
153.17 |
153.18 |
---|
2017-06-02 |
153.58 |
155.45 |
---|
2017-06-05 |
154.34 |
153.93 |
---|
stock.iloc[0,3]
153.18000000000001
stock.iloc[0:2, 0:3]
|
Open |
High |
Low |
---|
Date |
|
|
|
---|
2017-06-01 |
153.17 |
153.33 |
152.22 |
---|
2017-06-02 |
153.58 |
155.45 |
152.89 |
---|
stock.iloc[0:2, :]
|
Open |
High |
Low |
Close |
Volume |
---|
Date |
|
|
|
|
|
---|
2017-06-01 |
153.17 |
153.33 |
152.22 |
153.18 |
16404088 |
---|
2017-06-02 |
153.58 |
155.45 |
152.89 |
155.45 |
27770715 |
---|
stock.Volume > 5e7
Date
2017-06-01 False
2017-06-02 False
2017-06-05 False
2017-06-06 False
2017-06-07 False
2017-06-08 False
2017-06-09 True
2017-06-12 True
2017-06-13 False
2017-06-14 False
2017-06-15 False
2017-06-16 True
2017-06-19 False
2017-06-20 False
2017-06-21 False
2017-06-22 False
2017-06-23 False
2017-06-26 False
2017-06-27 False
2017-06-28 False
2017-06-29 False
2017-06-30 False
Name: Volume, dtype: bool
stock[stock.Volume > 5e7]
|
Open |
High |
Low |
Close |
Volume |
---|
Date |
|
|
|
|
|
---|
2017-06-09 |
155.19 |
155.19 |
146.02 |
148.98 |
64882657 |
---|
2017-06-12 |
145.74 |
146.09 |
142.51 |
145.42 |
72307330 |
---|
2017-06-16 |
143.78 |
144.50 |
142.20 |
142.27 |
50361093 |
---|
stock[stock.Close > stock.Open]
|
Open |
High |
Low |
Close |
Volume |
---|
Date |
|
|
|
|
|
---|
2017-06-01 |
153.17 |
153.33 |
152.22 |
153.18 |
16404088 |
---|
2017-06-02 |
153.58 |
155.45 |
152.89 |
155.45 |
27770715 |
---|
2017-06-06 |
153.90 |
155.81 |
153.78 |
154.45 |
26624926 |
---|
2017-06-07 |
155.02 |
155.98 |
154.48 |
155.37 |
21069647 |
---|
2017-06-15 |
143.32 |
144.48 |
142.21 |
144.29 |
32165373 |
---|
2017-06-19 |
143.66 |
146.74 |
143.66 |
146.34 |
32541404 |
---|
2017-06-21 |
145.52 |
146.07 |
144.61 |
145.87 |
21265751 |
---|
2017-06-23 |
145.13 |
147.16 |
145.11 |
146.28 |
35439389 |
---|
2017-06-28 |
144.49 |
146.11 |
143.16 |
145.83 |
22082432 |
---|
stock[(stock.Close > stock.Open) & (stock.Volume > 3e7)]
|
Open |
High |
Low |
Close |
Volume |
---|
Date |
|
|
|
|
|
---|
2017-06-15 |
143.32 |
144.48 |
142.21 |
144.29 |
32165373 |
---|
2017-06-19 |
143.66 |
146.74 |
143.66 |
146.34 |
32541404 |
---|
2017-06-23 |
145.13 |
147.16 |
145.11 |
146.28 |
35439389 |
---|
stock[(stock.Close > stock.Open) | (stock.Volume > 5e7)]
|
Open |
High |
Low |
Close |
Volume |
---|
Date |
|
|
|
|
|
---|
2017-06-01 |
153.17 |
153.33 |
152.22 |
153.18 |
16404088 |
---|
2017-06-02 |
153.58 |
155.45 |
152.89 |
155.45 |
27770715 |
---|
2017-06-06 |
153.90 |
155.81 |
153.78 |
154.45 |
26624926 |
---|
2017-06-07 |
155.02 |
155.98 |
154.48 |
155.37 |
21069647 |
---|
2017-06-09 |
155.19 |
155.19 |
146.02 |
148.98 |
64882657 |
---|
2017-06-12 |
145.74 |
146.09 |
142.51 |
145.42 |
72307330 |
---|
2017-06-15 |
143.32 |
144.48 |
142.21 |
144.29 |
32165373 |
---|
2017-06-16 |
143.78 |
144.50 |
142.20 |
142.27 |
50361093 |
---|
2017-06-19 |
143.66 |
146.74 |
143.66 |
146.34 |
32541404 |
---|
2017-06-21 |
145.52 |
146.07 |
144.61 |
145.87 |
21265751 |
---|
2017-06-23 |
145.13 |
147.16 |
145.11 |
146.28 |
35439389 |
---|
2017-06-28 |
144.49 |
146.11 |
143.16 |
145.83 |
22082432 |
---|
stock['fluctuation'] = stock['High'] - stock['Low']
stock.head()
|
Open |
High |
Low |
Close |
Volume |
fluctuation |
---|
Date |
|
|
|
|
|
|
---|
2017-06-01 |
153.17 |
153.33 |
152.22 |
153.18 |
16404088 |
1.11 |
---|
2017-06-02 |
153.58 |
155.45 |
152.89 |
155.45 |
27770715 |
2.56 |
---|
2017-06-05 |
154.34 |
154.45 |
153.46 |
153.93 |
25331662 |
0.99 |
---|
2017-06-06 |
153.90 |
155.81 |
153.78 |
154.45 |
26624926 |
2.03 |
---|
2017-06-07 |
155.02 |
155.98 |
154.48 |
155.37 |
21069647 |
1.50 |
---|
stock['Close'].shift(1)
Date
2017-06-01 NaN
2017-06-02 153.18
2017-06-05 155.45
2017-06-06 153.93
2017-06-07 154.45
2017-06-08 155.37
2017-06-09 154.99
2017-06-12 148.98
2017-06-13 145.42
2017-06-14 146.59
2017-06-15 145.16
2017-06-16 144.29
2017-06-19 142.27
2017-06-20 146.34
2017-06-21 145.01
2017-06-22 145.87
2017-06-23 145.63
2017-06-26 146.28
2017-06-27 145.82
2017-06-28 143.73
2017-06-29 145.83
2017-06-30 143.68
Name: Close, dtype: float64
stock['Change'] = stock['Close'] - stock['Close'].shift(1)
stock.head()
|
Open |
High |
Low |
Close |
Volume |
fluctuation |
Change |
---|
Date |
|
|
|
|
|
|
|
---|
2017-06-01 |
153.17 |
153.33 |
152.22 |
153.18 |
16404088 |
1.11 |
NaN |
---|
2017-06-02 |
153.58 |
155.45 |
152.89 |
155.45 |
27770715 |
2.56 |
2.27 |
---|
2017-06-05 |
154.34 |
154.45 |
153.46 |
153.93 |
25331662 |
0.99 |
-1.52 |
---|
2017-06-06 |
153.90 |
155.81 |
153.78 |
154.45 |
26624926 |
2.03 |
0.52 |
---|
2017-06-07 |
155.02 |
155.98 |
154.48 |
155.37 |
21069647 |
1.50 |
0.92 |
---|
本课作业
说明:以下问题请编写代码获得结果。
第一题:2017年6月22日当天的收盘价是多少?
##我自己输入的是这条:stock.loc['2017-06-22','close'],结果错了.参照前面的作业,输入后面这条
stock['Close']['2017-06-22']
145.63
第二题: 成交量超过7千万的是哪一天?
###我自己先尝试乱输入看看呢:stock['volume'>7e5]
####错得离谱,两点。 1.7千万的科学计数,是7e7; 2.stock.volume>7e7,才是正确的表示,
stock.Volume> 7e7
Date
2017-06-01 False
2017-06-02 False
2017-06-05 False
2017-06-06 False
2017-06-07 False
2017-06-08 False
2017-06-09 False
2017-06-12 True
2017-06-13 False
2017-06-14 False
2017-06-15 False
2017-06-16 False
2017-06-19 False
2017-06-20 False
2017-06-21 False
2017-06-22 False
2017-06-23 False
2017-06-26 False
2017-06-27 False
2017-06-28 False
2017-06-29 False
2017-06-30 False
Name: Volume, dtype: bool
###规则化一下呢,答案是6月12号
stock[stock.Volume> 7e7]
|
Open |
High |
Low |
Close |
Volume |
fluctuation |
Change |
---|
Date |
|
|
|
|
|
|
|
---|
2017-06-12 |
145.74 |
146.09 |
142.51 |
145.42 |
72307330 |
3.58 |
-3.56 |
---|
第三题:在2017年6月28日,收盘价减去开盘价是多少?
###我自己尝试着输入看看:stock[stock.Date='2017-06-28',stock.Close-stock.Open],结果错得离谱
stock['Close']-stock['Open']
###使用笨办法,直接算出所有的来,但是不知道如何筛选。应该可以把这段运算赋值给一个“差值”,然后在从“差值”中筛选
Date
2017-06-01 0.01
2017-06-02 1.87
2017-06-05 -0.41
2017-06-06 0.55
2017-06-07 0.35
2017-06-08 -0.26
2017-06-09 -6.21
2017-06-12 -0.32
2017-06-13 -0.57
2017-06-14 -2.34
2017-06-15 0.97
2017-06-16 -1.51
2017-06-19 2.68
2017-06-20 -1.86
2017-06-21 0.35
2017-06-22 -0.14
2017-06-23 1.15
2017-06-26 -1.35
2017-06-27 -1.28
2017-06-28 1.34
2017-06-29 -1.03
2017-06-30 -0.43
dtype: float64
答案是1.34
第四题: 开盘价低于144并且成交量大于5千万那一天的收盘价是多少?
参考此条stock[(stock.Close > stock.Open) & (stock.Volume > 3e7)]
stock[(stock.Open<144)&(stock.Volume>5e7)]
|
Open |
High |
Low |
Close |
Volume |
fluctuation |
Change |
---|
Date |
|
|
|
|
|
|
|
---|
2017-06-16 |
143.78 |
144.5 |
142.2 |
142.27 |
50361093 |
2.3 |
-2.02 |
---|
stock['Change'] = stock['Close'] - stock['Close'].shift(1)
stock
|
Open |
High |
Low |
Close |
Volume |
fluctuation |
Change |
---|
Date |
|
|
|
|
|
|
|
---|
2017-06-01 |
153.17 |
153.33 |
152.22 |
153.18 |
16404088 |
1.11 |
NaN |
---|
2017-06-02 |
153.58 |
155.45 |
152.89 |
155.45 |
27770715 |
2.56 |
2.27 |
---|
2017-06-05 |
154.34 |
154.45 |
153.46 |
153.93 |
25331662 |
0.99 |
-1.52 |
---|
2017-06-06 |
153.90 |
155.81 |
153.78 |
154.45 |
26624926 |
2.03 |
0.52 |
---|
2017-06-07 |
155.02 |
155.98 |
154.48 |
155.37 |
21069647 |
1.50 |
0.92 |
---|
2017-06-08 |
155.25 |
155.54 |
154.40 |
154.99 |
21250798 |
1.14 |
-0.38 |
---|
2017-06-09 |
155.19 |
155.19 |
146.02 |
148.98 |
64882657 |
9.17 |
-6.01 |
---|
2017-06-12 |
145.74 |
146.09 |
142.51 |
145.42 |
72307330 |
3.58 |
-3.56 |
---|
2017-06-13 |
147.16 |
147.45 |
145.15 |
146.59 |
34165445 |
2.30 |
1.17 |
---|
2017-06-14 |
147.50 |
147.50 |
143.84 |
145.16 |
31531232 |
3.66 |
-1.43 |
---|
2017-06-15 |
143.32 |
144.48 |
142.21 |
144.29 |
32165373 |
2.27 |
-0.87 |
---|
2017-06-16 |
143.78 |
144.50 |
142.20 |
142.27 |
50361093 |
2.30 |
-2.02 |
---|
2017-06-19 |
143.66 |
146.74 |
143.66 |
146.34 |
32541404 |
3.08 |
4.07 |
---|
2017-06-20 |
146.87 |
146.87 |
144.94 |
145.01 |
24900073 |
1.93 |
-1.33 |
---|
2017-06-21 |
145.52 |
146.07 |
144.61 |
145.87 |
21265751 |
1.46 |
0.86 |
---|
2017-06-22 |
145.77 |
146.70 |
145.12 |
145.63 |
19106294 |
1.58 |
-0.24 |
---|
2017-06-23 |
145.13 |
147.16 |
145.11 |
146.28 |
35439389 |
2.05 |
0.65 |
---|
2017-06-26 |
147.17 |
148.28 |
145.38 |
145.82 |
25692361 |
2.90 |
-0.46 |
---|
2017-06-27 |
145.01 |
146.16 |
143.62 |
143.73 |
24761891 |
2.54 |
-2.09 |
---|
2017-06-28 |
144.49 |
146.11 |
143.16 |
145.83 |
22082432 |
2.95 |
2.10 |
---|
2017-06-29 |
144.71 |
145.13 |
142.28 |
143.68 |
31499368 |
2.85 |
-2.15 |
---|
2017-06-30 |
144.45 |
144.96 |
143.78 |
144.02 |
23024107 |
1.18 |
0.34 |
---|