- Python预训练模型实现俄语音频转文字
啥都鼓捣的小yao
人工智能python音视频人工智能
Python预训练模型实现俄语音频转文字使用CommonVoice8.0、Golos和MultilingualTEDx的训练和验证分割对俄语的facebook/wav2vec2-xls-r-1b进行了微调。使用此模型时,请确保您的语音输入以16kHz采样。我们只需要装好三个功能包,写好你的文件路径即可使用!importtorchimportlibrosafromtransformersimport
- CI/CD管道
NEUMaple
微服务ci/cdspringcloud微服务spring
CI/CD管道指的是持续集成(ContinuousIntegration,CI)、持续交付(ContinuousDelivery,CD)和持续部署(ContinuousDeployment,CD)的组合流程,用于自动化软件开发过程中的构建、测试和部署环节。这些实践旨在提高软件开发的质量和效率,同时减少人为错误。持续集成(CI)持续集成是指团队成员频繁地将代码变更合并到共享的主分支或主线中,并且每次
- spring MVC 介绍
LCY133
spring后端springmvcjava
SpringMVC是Spring框架中用于构建Web应用的核心模块,基于MVC设计模式(Model-View-Controller)实现。以下是其核心概念的整理:1.MVC设计模式•Model(模型):封装业务数据和业务逻辑(如POJO对象、Service层)。•View(视图):负责数据展示(如JSP、Thymeleaf、HTML)。•Controller(控制器):接收请求,调用业务逻辑,返回
- 如何使用JSON输出解析器解析语言模型的输出
vaidfl
json语言模型easyuipython
在现代AI应用中,让语言模型返回结构化的数据是一个重要的能力,特别是在需要进一步处理或集成的时候。本文将深入探讨如何利用JsonOutputParser来解析语言模型的JSON输出。技术背景介绍随着语言模型的普及,许多应用场景需要从自然语言处理任务中获取结构化的输出。针对这一需求,输出解析器应运而生,它能够帮助我们定义JSON模式,通过提示语言模型生成符合该模式的输出,并将其解析为JSON格式。核
- SAP ABAP 调用 DeepSeek,API Key 存在什么地方最安全?
汪子熙
ABAP百科全书安全ABAPNetWeaver思爱普
笔者最近在处理一个SAP电商云和SAPS/4HANA集成后商品库存显示不同步的棘手问题。DeepSeek和ChatGPT没能帮上忙,最后还是查公司内网wiki搞定了。DeepSeek和ChatGPT确实不是万能的。ChatGPT3.5刚发布不久,我记得很多朋友聊起过大语言模型的「讨好型人格」,即倾向于迎合用户的观点、顺从用户的意愿。甚至在极端情况下,当用户对其回复提出质疑时,它会马上认怂,承认自己
- 华为基于IPD如何做需求管理?!从解读96页【华为IPD如何做需求管理】PPT开始
智慧化智能化数字化方案
华为学习专栏项目经理售前工程师技能提升华为华为IPD流程IPD流程体系
该文档全面介绍了华为的IPD需求管理体系,包括概论、体系构建、跨部门协作、需求收集、分析、分发、文档编写与评审、确认、变更管理、跟踪与监控、效果评估以及常见问题解答等内容,旨在为企业提供一套系统的需求管理方法,以提高产品开发的成功率和客户满意度。需求管理概论1.需求管理的定义与流程-需求从客户中来,通过市场管理、需求管理流程提取,经IPD流程实现后回到客户中,形成端到端需求管理。IPD流程总体框架
- 使用LocalAI进行文本嵌入的实战指南
bavDHAUO
python
技术背景介绍文本嵌入是一种将文本片段转换为高维向量的技术,可以用于自然语言处理任务中的相似性计算、信息检索等应用。LocalAI提供了一种本地化的嵌入解决方案,允许开发者在本地环境中运行和测试嵌入模型。通过在本地部署LocalAI服务,您可以避免依赖外部API,享受更快的响应速度和更好的数据隐私。核心原理解析LocalAIEmbedding类主要负责与本地运行的LocalAI服务通信,进行文本嵌入
- 关于forward函数
oioz
深度学习
定义forward函数是模型的核心前向传播逻辑,定义了输入数据如何在模型中传递和计算。它将输入数据通过模型的各层(如卷积层、全连接层等),计算出模型的输出。作用负责模型的主要计算逻辑。在训练和验证过程中都会被调用。特点必须实现:在PyTorch中,forward函数是模型的核心部分,必须显式定义。灵活性高:可以根据模型需要,自由定义forward函数的内容,包括各种计算操作。示例(PyTorch)
- Ubuntu和Windows系统之Mamba_ssm安装
Netceor
Pythonubuntuwindowslinux
Mamba的论文:https://arxiv.org/abs/2312.00752Mamba的github:https://github.com/state-spaces/mamba一、Ubuntu安装直接新建一个环境是最好的,不然很容易产生各种冲突#创建环境和相关包condacreate-nmambapython=3.10.13condaactivatemambacondainstallcuda
- 使用 Argilla 进行大语言模型数据管理与监控
qahaj
语言模型python人工智能
技术背景介绍Argilla是一个开源的数据管理平台,专为大语言模型(LLMs)设计。它旨在通过快速的数据管理以及结合人类和机器的反馈,帮助开发者构建更强大的语言模型。同时,Argilla支持整个MLOps周期的每个步骤,从数据标注到模型监控。核心原理解析Argilla的核心优势在于其灵活的数据管理流程和强大的反馈机制。通过Argilla,开发者可以实时监控模型性能,并根据需要调整数据标注策略。这种
- Azure Delta Lake、Databricks和Event Hubs实现实时欺诈检测
weixin_30777913
azure云计算
设计Azure云架构方案实现AzureDeltaLake和AzureDatabricks,结合AzureEventHubs/Kafka摄入实时数据,通过DeltaLake实现Exactly-Once语义,实时欺诈检测(流数据写入DeltaLake,批处理模型实时更新),以及具体实现的详细步骤和关键PySpark代码。完整实现代码需要根据具体数据格式和业务规则进行调整,建议通过DatabricksR
- LLM:软件测试的颠覆性力量
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LLM:软件测试的颠覆性力量关键词:大语言模型(LLM)、软件测试、人工智能、测试自动化、测试效率、质量保证、测试革新1.背景介绍在当今快速发展的软件行业中,测试一直是确保产品质量的关键环节。随着人工智能技术的飞速进步,特别是大语言模型(LargeLanguageModels,简称LLM)的出现,软件测试领域正经历着前所未有的变革。LLM凭借其强大的自然语言处理能力和广泛的知识储备,正在重塑我们对
- 卷积神经网络Batch Normalization的作用
arron8899
cnnbatch人工智能
BatchNormalization的作用(通俗版)1.像“稳定器”一样校准每层输入想象你在烤多层蛋糕,每层蛋糕的烘烤温度不同(相当于神经网络的每一层数据分布不同)。没有BN时,烤箱温度忽高忽低,导致有的层烤焦(梯度爆炸),有的层不熟(梯度消失)。BN的作用相当于给每一层装了一个自动温度调节器,实时将输入数据调整到标准温度(均值为0,方差为1),保证每层都能均匀受热,训练更稳定。2.让模型训练“少
- 使用Dall-E生成图像:文本到图像的魔力
shuoac
计算机视觉人工智能python
使用Dall-E生成图像:文本到图像的魔力技术背景介绍Dall-E是OpenAI开发的一个强大的文本到图像生成模型,它能够根据自然语言描述创造出全新的数字图像。这一技术基于深度学习的方法,使得创意与AI图像生成的结合更具可能性。本文将介绍如何调用Dall-EAPI来生成图像,从而使开发者能够将这一技术应用到自己的项目中。核心原理解析Dall-E利用大型语言模型(LLM)从用户提供的文本描述中提取详
- 深入了解盘古大模型:技术、应用与未来
Hardess-god
Literaturereview人工智能
随着人工智能技术的迅猛发展,预训练大模型已成为AI领域最前沿、最热门的研究方向之一。近年来,中国自主研发的大模型之一——盘古模型(PanGuModel)逐渐进入公众视野,凭借其强大的性能和广泛的应用前景,引发了行业内外的广泛关注。什么是盘古大模型?盘古大模型是华为公司联合多家科研机构共同研发的超大规模预训练语言模型。该模型以中文数据为主进行训练,旨在推动中文自然语言处理(NLP)以及跨模态应用的技
- 【人工智能之大模型】阐述生成式语言模型的工作机理...(二)
985小水博一枚呀
大大大模型知识点人工智能语言模型自然语言处理机器学习神经网络
【人工智能之大模型】阐述生成式语言模型的工作机理…(二)【人工智能之大模型】阐述生成式语言模型的工作机理…(二)文章目录【人工智能之大模型】阐述生成式语言模型的工作机理...(二)前言4.代码逐行解释TransformerBlock类初始化前向传播GenerativeLM类初始化前向传播推理示例测试生成5.总结欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!祝所有的硕博生都能遇到好的导师!好的审稿
- 利用HFSS软件对射频电路电磁兼容性的深入研究
DidYour
课程设计
摘要本文旨在借助HFSS(HighFrequencyStructureSimulator)软件深入研究射频电路的电磁兼容性(EMC)。通过对射频电路中电磁干扰产生机制的剖析,阐述如何运用HFSS软件建立精确的射频电路模型,进行电磁兼容性仿真分析,包括近场和远场分析、信号完整性分析等。结合实际案例,探讨不同因素对射频电路EMC性能的影响,提出基于HFSS仿真结果的优化设计策略,为提升射频电路电磁兼容
- 复习JVM
LMQ6
jvm
JVM的三个主要主题:1.java内存区域划分:a.堆b.栈c.元数据区d.程序计数器2.类加载a.加载:打开.class文件,读取内容b.验证:验证.class文件的格式是否符合要求.c.准备:给类对象分配内存空间d.解析:初始化字符串常量e.初始化:对类对象中的各个部分初始化,比如静态代码块,静态成员的初始化等经典面试题:双亲委派模型他出现在"加载"环节,根据"全限定名称"寻找对应的.clas
- 一切皆是映射:实现神经网络的硬件加速技术:GPU、ASIC(专用集成电路)和FPGA(现场可编程门阵列)
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
文章目录一切皆是映射:实现神经网络的硬件加速技术:GPU、ASIC(专用集成电路)和FPGA(现场可编程门阵列)1.背景介绍2.核心概念与联系3.核心算法原理&具体操作步骤3.1算法原理概述3.2算法步骤详解3.2.1GPU加速3.2.2ASIC加速3.2.3FPGA加速3.3算法优缺点GPUASICFPGA3.4算法应用领域4.数学模型和公式&详细讲解&举例说明4.1数学模型构建4.2公式推导过
- NLP高频面试题(七)——GPT和Bert的mask有什么区别?
Chaos_Wang_
NLP常见面试题自然语言处理gptbert
GPT和BERT的Mask机制对比:核心区别与优化策略在NLP领域,GPT和BERT是最具代表性的预训练语言模型之一。它们都在训练过程中使用了Mask机制来引导模型学习语言表示,但具体实现方式和目标却有所不同。本文将深入探讨GPT和BERT的Mask方法的核心区别,并分析其优化策略。1.BERT的Mask机制:基于MLM(MaskedLanguageModel)BERT(Bidirectional
- 第三十一篇 数据仓库(DW)与商业智能(BI)架构设计与实践指南
随缘而动,随遇而安
数据库sql数据仓库大数据数据库架构
目录一、DW/BI架构核心理论与选型策略1.1主流架构模式对比(1)Kimball维度建模架构(2)Inmon企业工厂架构(3)混合架构二、架构设计方法论与实施步骤2.1维度建模实战指南(1)模型选择决策树(2)ETL开发规范2.2实时BI技术栈选型三、全链路实施与优化策略3.1五阶段实施框架3.2数据治理体系构建四、行业场景深度实践4.1电商用户行为分析4.2金融风控实时预警五、关键问题解析Q1
- 揭秘Java内存模型:那些让人头疼的可见性问题--JVM基础(15)
guangzhi0633
javajvm开发语言
一、揭秘Java内存模型:那些让人头疼的可见性问题在Java的世界里,多线程编程如同一场精彩的魔术表演,但稍有不慎,就可能陷入“内存可见性”这个魔术黑洞。今天,就让我们一起揭开Java内存模型的神秘面纱,探讨那些让人头疼的可见性问题!可见性问题的本质可见性问题,简单来说,就是当一个线程修改了共享变量的值后,其他线程却无法立即看到这个变化。这就像是你在房间里悄悄换了件衣服,但别人却看不到你的新装。现
- 知识图谱中NLP新技术
魔王阿卡纳兹
知识图谱入门大数据治理与分析知识图谱自然语言处理人工智能
知识图谱与自然语言处理(NLP)的结合是当前人工智能领域的前沿方向,其技术发展呈现多维度融合与场景深化的特点。以下从核心技术突破、应用场景创新及未来趋势三个层面,系统梳理知识图谱中NLP的最新进展:一、核心技术突破基于预训练模型的图谱构建与增强预训练语言模型与知识嵌入融合:以BERT、KEPLER为代表的模型通过联合优化知识嵌入(KE)和语言建模目标,将知识图谱中的结构化知识融入预训练过程,显著提
- 平衡二叉树(AVL树):数据结构特性与自平衡技术详解
One Key Variable
课程设计
摘要平衡二叉树,尤其是AVL树,在追求高效数据存储与检索的场景中占据重要地位。本文深入剖析AVL树的数据结构特性,详细解读其自平衡技术原理与实现,帮助读者理解AVL树如何在动态数据操作中维持高效性能。一、引言在数据处理过程中,二叉搜索树虽能实现快速查找,但在频繁插入和删除节点时,可能因结构失衡导致查找效率大幅下降。AVL树作为一种自平衡二叉搜索树,通过严格的平衡条件和自平衡技术,确保树在动态操作下
- 微软 LIDA 库:基于大模型的自动化数据分析与可视化
窝窝和牛牛
microsoft数据分析
微软LIDA库:基于大模型的自动化数据分析与可视化一、核心架构与LLM交互流程调用LLM生成数据摘要基于LLM推理分析目标LLM生成可视化代码结合图像生成模型优化原始数据Summarizer模块结构化摘要GoalExplorer模块可视化目标列表VizGenerator模块可执行图表代码Infographer模块风格化信息图表二、LLM交互核心功能1.多模型支持架构兼容主流LLM服务商:通过统一接
- CST Microwave Studio助力射频电路多物理场耦合分析
FindEveryone
课程设计
摘要本文重点阐述CSTMicrowaveStudio在射频电路多物理场耦合分析中的关键作用。通过解析射频电路中涉及的电磁场、热场、机械场等多物理场耦合现象,详细介绍如何运用CSTMicrowaveStudio构建多物理场联合模型,进行全面的仿真分析。结合具体案例,深入探讨多物理场耦合对射频电路性能的影响,并依据仿真结果提出有效的优化策略,为提升射频电路在复杂工作环境下的可靠性和稳定性提供理论依据与
- 逐行讲解大模型解码超参数大全(temperature、top-k、top-p等所有参数)
Gaffey大杂烩
大模型机器学习人工智能
目录简介宏观概览解码策略实现逻辑常见的解码超参数temperature温度系数top_ktop_prepetition_penalty重复惩罚不常见的解码超参数min_ptypical解码ϵ采样η采样Classifier-FreeGuidance(CFG)序列偏置干预HammingDiversity编码器重复惩罚n-gram重复惩罚编码器n-gram重复惩罚bad_token惩罚最小长度限制最小新
- 如何用Function Calling解锁OpenAI的「真实世界」交互能力?(附Node.js 实战)
hongkid
AI编程
一、FunctionCalling:大模型的「手脚延伸器」1.1核心定义FunctionCalling是OpenAI在2023年6月13日推出的革命性功能(对应模型版本gpt-3.5-turbo-0613和gpt-4-0613),允许开发者通过自然语言指令触发预定义函数,实现大模型与现实世界系统的交互。如同给语言模型安装「手脚」,使其不仅能思考,还能执行具体操作。openai官方说明:https:
- OpenGL ES 如何渲染 16bit 图像?
字节流动
OpenGLES3.0OpenGLES音视频图形渲染Androidc++
未经作者(微信ID:Byte-Flow)允许,禁止转载文章首发于公众号:字节流动最近有不少读者私信问OpenGLES如何处理16bit图像(P010)?然后我直接贴给他们一段在OpenGL环境下验证过的上传16bit图像数据的代码glTexImage2D(GL_TEXTURE_2D,0,GL_R16UI,width,height,0,GL_RED_INTEGER,GL_UNSIGNED_SHORT
- 简单理解机器学习中top_k、top_p、temperature三个参数的作用
无级程序员
机器学习人工智能
在机器学习中,top_k、top_p和temperature是用于控制生成模型(如语言模型)输出质量的参数,尤其在文本生成任务中常见。然而,网上文章很多很全,但大多晦涩难懂,今天我们来用最简单的语言谈谈它们的具体作用:1.点菜式筛选法:top_k参数英文全称:top-k中文名称:前k个具体意义:top_k参数就像是你在餐厅点菜时,服务员只给你推荐菜单上前k名的招牌菜。在AI文本生成中,top_k参
- Spring的注解积累
yijiesuifeng
spring注解
用注解来向Spring容器注册Bean。
需要在applicationContext.xml中注册:
<context:component-scan base-package=”pagkage1[,pagkage2,…,pagkageN]”/>。
如:在base-package指明一个包
<context:component-sc
- 传感器
百合不是茶
android传感器
android传感器的作用主要就是来获取数据,根据得到的数据来触发某种事件
下面就以重力传感器为例;
1,在onCreate中获得传感器服务
private SensorManager sm;// 获得系统的服务
private Sensor sensor;// 创建传感器实例
@Override
protected void
- [光磁与探测]金吕玉衣的意义
comsci
这是一个古代人的秘密:现在告诉大家
信不信由你们:
穿上金律玉衣的人,如果处于灵魂出窍的状态,可以飞到宇宙中去看星星
这就是为什么古代
- 精简的反序打印某个数
沐刃青蛟
打印
以前看到一些让求反序打印某个数的程序。
比如:输入123,输出321。
记得以前是告诉你是几位数的,当时就抓耳挠腮,完全没有思路。
似乎最后是用到%和/方法解决的。
而今突然想到一个简短的方法,就可以实现任意位数的反序打印(但是如果是首位数或者尾位数为0时就没有打印出来了)
代码如下:
long num, num1=0;
- PHP:6种方法获取文件的扩展名
IT独行者
PHP扩展名
PHP:6种方法获取文件的扩展名
1、字符串查找和截取的方法
1
$extension
=
substr
(
strrchr
(
$file
,
'.'
), 1);
2、字符串查找和截取的方法二
1
$extension
=
substr
- 面试111
文强chu
面试
1事务隔离级别有那些 ,事务特性是什么(问到一次)
2 spring aop 如何管理事务的,如何实现的。动态代理如何实现,jdk怎么实现动态代理的,ioc是怎么实现的,spring是单例还是多例,有那些初始化bean的方式,各有什么区别(经常问)
3 struts默认提供了那些拦截器 (一次)
4 过滤器和拦截器的区别 (频率也挺高)
5 final,finally final
- XML的四种解析方式
小桔子
domjdomdom4jsax
在平时工作中,难免会遇到把 XML 作为数据存储格式。面对目前种类繁多的解决方案,哪个最适合我们呢?在这篇文章中,我对这四种主流方案做一个不完全评测,仅仅针对遍历 XML 这块来测试,因为遍历 XML 是工作中使用最多的(至少我认为)。 预 备 测试环境: AMD 毒龙1.4G OC 1.5G、256M DDR333、Windows2000 Server
- wordpress中常见的操作
aichenglong
中文注册wordpress移除菜单
1 wordpress中使用中文名注册解决办法
1)使用插件
2)修改wp源代码
进入到wp-include/formatting.php文件中找到
function sanitize_user( $username, $strict = false
- 小飞飞学管理-1
alafqq
管理
项目管理的下午题,其实就在提出问题(挑刺),分析问题,解决问题。
今天我随意看下10年上半年的第一题。主要就是项目经理的提拨和培养。
结合我自己经历写下心得
对于公司选拔和培养项目经理的制度有什么毛病呢?
1,公司考察,选拔项目经理,只关注技术能力,而很少或没有关注管理方面的经验,能力。
2,公司对项目经理缺乏必要的项目管理知识和技能方面的培训。
3,公司对项目经理的工作缺乏进行指
- IO输入输出部分探讨
百合不是茶
IO
//文件处理 在处理文件输入输出时要引入java.IO这个包;
/*
1,运用File类对文件目录和属性进行操作
2,理解流,理解输入输出流的概念
3,使用字节/符流对文件进行读/写操作
4,了解标准的I/O
5,了解对象序列化
*/
//1,运用File类对文件目录和属性进行操作
//在工程中线创建一个text.txt
- getElementById的用法
bijian1013
element
getElementById是通过Id来设置/返回HTML标签的属性及调用其事件与方法。用这个方法基本上可以控制页面所有标签,条件很简单,就是给每个标签分配一个ID号。
返回具有指定ID属性值的第一个对象的一个引用。
语法:
&n
- 励志经典语录
bijian1013
励志人生
经典语录1:
哈佛有一个著名的理论:人的差别在于业余时间,而一个人的命运决定于晚上8点到10点之间。每晚抽出2个小时的时间用来阅读、进修、思考或参加有意的演讲、讨论,你会发现,你的人生正在发生改变,坚持数年之后,成功会向你招手。不要每天抱着QQ/MSN/游戏/电影/肥皂剧……奋斗到12点都舍不得休息,看就看一些励志的影视或者文章,不要当作消遣;学会思考人生,学会感悟人生
- [MongoDB学习笔记三]MongoDB分片
bit1129
mongodb
MongoDB的副本集(Replica Set)一方面解决了数据的备份和数据的可靠性问题,另一方面也提升了数据的读写性能。MongoDB分片(Sharding)则解决了数据的扩容问题,MongoDB作为云计算时代的分布式数据库,大容量数据存储,高效并发的数据存取,自动容错等是MongoDB的关键指标。
本篇介绍MongoDB的切片(Sharding)
1.何时需要分片
&nbs
- 【Spark八十三】BlockManager在Spark中的使用场景
bit1129
manager
1. Broadcast变量的存储,在HttpBroadcast类中可以知道
2. RDD通过CacheManager存储RDD中的数据,CacheManager也是通过BlockManager进行存储的
3. ShuffleMapTask得到的结果数据,是通过FileShuffleBlockManager进行管理的,而FileShuffleBlockManager最终也是使用BlockMan
- yum方式部署zabbix
ronin47
yum方式部署zabbix
安装网络yum库#rpm -ivh http://repo.zabbix.com/zabbix/2.4/rhel/6/x86_64/zabbix-release-2.4-1.el6.noarch.rpm 通过yum装mysql和zabbix调用的插件还有agent代理#yum install zabbix-server-mysql zabbix-web-mysql mysql-
- Hibernate4和MySQL5.5自动创建表失败问题解决方法
byalias
J2EEHibernate4
今天初学Hibernate4,了解了使用Hibernate的过程。大体分为4个步骤:
①创建hibernate.cfg.xml文件
②创建持久化对象
③创建*.hbm.xml映射文件
④编写hibernate相应代码
在第四步中,进行了单元测试,测试预期结果是hibernate自动帮助在数据库中创建数据表,结果JUnit单元测试没有问题,在控制台打印了创建数据表的SQL语句,但在数据库中
- Netty源码学习-FrameDecoder
bylijinnan
javanetty
Netty 3.x的user guide里FrameDecoder的例子,有几个疑问:
1.文档说:FrameDecoder calls decode method with an internally maintained cumulative buffer whenever new data is received.
为什么每次有新数据到达时,都会调用decode方法?
2.Dec
- SQL行列转换方法
chicony
行列转换
create table tb(终端名称 varchar(10) , CEI分值 varchar(10) , 终端数量 int)
insert into tb values('三星' , '0-5' , 74)
insert into tb values('三星' , '10-15' , 83)
insert into tb values('苹果' , '0-5' , 93)
- 中文编码测试
ctrain
编码
循环打印转换编码
String[] codes = {
"iso-8859-1",
"utf-8",
"gbk",
"unicode"
};
for (int i = 0; i < codes.length; i++) {
for (int j
- hive 客户端查询报堆内存溢出解决方法
daizj
hive堆内存溢出
hive> select * from t_test where ds=20150323 limit 2;
OK
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
问题原因: hive堆内存默认为256M
这个问题的解决方法为:
修改/us
- 人有多大懒,才有多大闲 (评论『卓有成效的程序员』)
dcj3sjt126com
程序员
卓有成效的程序员给我的震撼很大,程序员作为特殊的群体,有的人可以这么懒, 懒到事情都交给机器去做 ,而有的人又可以那么勤奋,每天都孜孜不倦得做着重复单调的工作。
在看这本书之前,我属于勤奋的人,而看完这本书以后,我要努力变成懒惰的人。
不要在去庞大的开始菜单里面一项一项搜索自己的应用程序,也不要在自己的桌面上放置眼花缭乱的快捷图标
- Eclipse简单有用的配置
dcj3sjt126com
eclipse
1、显示行号 Window -- Prefences -- General -- Editors -- Text Editors -- show line numbers
2、代码提示字符 Window ->Perferences,并依次展开 Java -> Editor -> Content Assist,最下面一栏 auto-Activation
- 在tomcat上面安装solr4.8.0全过程
eksliang
Solrsolr4.0后的版本安装solr4.8.0安装
转载请出自出处:
http://eksliang.iteye.com/blog/2096478
首先solr是一个基于java的web的应用,所以安装solr之前必须先安装JDK和tomcat,我这里就先省略安装tomcat和jdk了
第一步:当然是下载去官网上下载最新的solr版本,下载地址
- Android APP通用型拒绝服务、漏洞分析报告
gg163
漏洞androidAPP分析
点评:记得曾经有段时间很多SRC平台被刷了大量APP本地拒绝服务漏洞,移动安全团队爱内测(ineice.com)发现了一个安卓客户端的通用型拒绝服务漏洞,来看看他们的详细分析吧。
0xr0ot和Xbalien交流所有可能导致应用拒绝服务的异常类型时,发现了一处通用的本地拒绝服务漏洞。该通用型本地拒绝服务可以造成大面积的app拒绝服务。
针对序列化对象而出现的拒绝服务主要
- HoverTree项目已经实现分层
hvt
编程.netWebC#ASP.ENT
HoverTree项目已经初步实现分层,源代码已经上传到 http://hovertree.codeplex.com请到SOURCE CODE查看。在本地用SQL Server 2008 数据库测试成功。数据库和表请参考:http://keleyi.com/a/bjae/ue6stb42.htmHoverTree是一个ASP.NET 开源项目,希望对你学习ASP.NET或者C#语言有帮助,如果你对
- Google Maps API v3: Remove Markers 移除标记
天梯梦
google maps api
Simply do the following:
I. Declare a global variable:
var markersArray = [];
II. Define a function:
function clearOverlays() {
for (var i = 0; i < markersArray.length; i++ )
- jQuery选择器总结
lq38366
jquery选择器
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
- 基础数据结构和算法六:Quick sort
sunwinner
AlgorithmQuicksort
Quick sort is probably used more widely than any other. It is popular because it is not difficult to implement, works well for a variety of different kinds of input data, and is substantially faster t
- 如何让Flash不遮挡HTML div元素的技巧_HTML/Xhtml_网页制作
刘星宇
htmlWeb
今天在写一个flash广告代码的时候,因为flash自带的链接,容易被当成弹出广告,所以做了一个div层放到flash上面,这样链接都是a触发的不会被拦截,但发现flash一直处于div层上面,原来flash需要加个参数才可以。
让flash置于DIV层之下的方法,让flash不挡住飘浮层或下拉菜单,让Flash不档住浮动对象或层的关键参数:wmode=opaque。
方法如下:
- Mybatis实用Mapper SQL汇总示例
wdmcygah
sqlmysqlmybatis实用
Mybatis作为一个非常好用的持久层框架,相关资料真的是少得可怜,所幸的是官方文档还算详细。本博文主要列举一些个人感觉比较常用的场景及相应的Mapper SQL写法,希望能够对大家有所帮助。
不少持久层框架对动态SQL的支持不足,在SQL需要动态拼接时非常苦恼,而Mybatis很好地解决了这个问题,算是框架的一大亮点。对于常见的场景,例如:批量插入/更新/删除,模糊查询,多条件查询,联表查询,