- 吴恩达深度学习笔记(30)-正则化的解释
极客Array
正则化(Regularization)深度学习可能存在过拟合问题——高方差,有两个解决方法,一个是正则化,另一个是准备更多的数据,这是非常可靠的方法,但你可能无法时时刻刻准备足够多的训练数据或者获取更多数据的成本很高,但正则化通常有助于避免过拟合或减少你的网络误差。如果你怀疑神经网络过度拟合了数据,即存在高方差问题,那么最先想到的方法可能是正则化,另一个解决高方差的方法就是准备更多数据,这也是非常
- 吴恩达深度学习笔记(24)-为什么要使用深度神经网络?
极客Array
为什么使用深层表示?(Whydeeprepresentations?)我们都知道深度神经网络能解决好多问题,其实并不需要很大的神经网络,但是得有深度,得有比较多的隐藏层,这是为什么呢?我们一起来看几个例子来帮助理解,为什么深度神经网络会很好用。首先,深度网络在计算什么?如果你在建一个人脸识别或是人脸检测系统,深度神经网络所做的事就是,当你输入一张脸部的照片,然后你可以把深度神经网络的第一层,当成一
- 【深度学习笔记】1 数据操作
RIKI_1
深度学习深度学习笔记人工智能
注:本文为《动手学深度学习》开源内容,仅为个人学习记录,无抄袭搬运意图数据操作在深度学习中,我们通常会频繁地对数据进行操作。作为动手学深度学习的基础,本节将介绍如何对内存中的数据进行操作。在PyTorch中,torch.Tensor是存储和变换数据的主要工具。如果你之前用过NumPy,你会发现Tensor和NumPy的多维数组非常类似。然而,Tensor提供GPU计算和自动求梯度等更多功能,这些使
- 【深度学习笔记】6_4 循环神经网络的从零开始实现
RIKI_1
深度学习深度学习笔记rnn
注:本文为《动手学深度学习》开源内容,部分标注了个人理解,仅为个人学习记录,无抄袭搬运意图6.4循环神经网络的从零开始实现在本节中,我们将从零开始实现一个基于字符级循环神经网络的语言模型,并在周杰伦专辑歌词数据集上训练一个模型来进行歌词创作。首先,我们读取周杰伦专辑歌词数据集:importtimeimportmathimportnumpyasnpimporttorchfromtorchimport
- 【深度学习笔记】6_10 双向循环神经网络bi-rnn
RIKI_1
深度学习深度学习笔记rnn
注:本文为《动手学深度学习》开源内容,部分标注了个人理解,仅为个人学习记录,无抄袭搬运意图6.10双向循环神经网络之前介绍的循环神经网络模型都是假设当前时间步是由前面的较早时间步的序列决定的,因此它们都将信息通过隐藏状态从前往后传递。有时候,当前时间步也可能由后面时间步决定。例如,当我们写下一个句子时,可能会根据句子后面的词来修改句子前面的用词。双向循环神经网络通过增加从后往前传递信息的隐藏层来更
- 深度学习笔记1:神经网络端到端学习笔记
撒哈拉土狼
深度学习
许多重要问题都可以抽象为变长序列学习问题(sequencetosequencelearning),如语音识别、机器翻译、字符识别。这类问题的特点是,1)输入和输出都是序列(如连续值语音信号/特征、离散值的字符),2)序列长度都不固定,3)并且输入输出序列长度没有对应关系。因此,传统的神经网络模型(DNN,CNN,RNN)不能直接以端到端的方式解决这类问题的建模和学习问题。解决变长序列的端到端学习,
- 吴恩达深度学习-L1 神经网络和深度学习总结
向来痴_
深度学习人工智能
作业地址:吴恩达《深度学习》作业线上版-知乎(zhihu.com)写的很好的笔记:吴恩达《深度学习》笔记汇总-知乎(zhihu.com)我的「吴恩达深度学习笔记」汇总帖(附18个代码实战项目)-知乎(zhihu.com)此处只记录需要注意的点,若想看原笔记请移步。1.1深度学习入门我们只需要管理神经网络的输入和输出,而不用指定中间的特征,也不用理解它们究竟有没有实际意义。1.2简单的神经网络——逻
- 深度学习笔记:推理服务
TaoTao Li
tensorflow深度学习深度学习人工智能机器学习
在线推理服务解决的问题样本处理特征抽取(生成)特征抽取过程特征定义通用定义具体定义特征抽取加速Embeding查询NN计算DL框架计算优化图优化量化优化异构计算CodeGen总结参考资料解决的问题模型训练解决模型效果问题,模型推理解决模型实时预测问题。推理服务是把训练好的模型部署到线上,进行实时预测的过程。如阿里的RTP系统顾名思义,实时预测是相对于非实时预测(离线预测)而言,非实时预测是将训练好
- fast.ai 深度学习笔记(三)
绝不原创的飞龙
人工智能人工智能深度学习笔记
深度学习2:第1部分第6课原文:medium.com/@hiromi_suenaga/deep-learning-2-part-1-lesson-6-de70d626976c译者:飞龙协议:CCBY-NC-SA4.0来自fast.ai课程的个人笔记。随着我继续复习课程以“真正”理解它,这些笔记将继续更新和改进。非常感谢Jeremy和Rachel给了我这个学习的机会。第6课[##2017年深度学习优
- 深度学习笔记
stoAir
深度学习笔记人工智能
DeepLearningBasic神经网络:algorithm1input1outputinput2input3input4algorithm2监督学习:1个x对应1个y;Sigmoid:激活函数sigmoid=11+e−xsigmoid=\frac{1}{1+e^{-x}}sigmoid=1+e−x1ReLU:线性整流函数;##LogisticRegression-->binaryclassif
- fast.ai 深度学习笔记(六)
绝不原创的飞龙
人工智能人工智能python深度学习
深度学习2:第2部分第12课原文:medium.com/@hiromi_suenaga/deep-learning-2-part-2-lesson-12-215dfbf04a94译者:飞龙协议:CCBY-NC-SA4.0来自fast.ai课程的个人笔记。随着我继续复习课程以“真正”理解它,这些笔记将继续更新和改进。非常感谢Jeremy和Rachel给了我这个学习的机会。生成对抗网络(GANs)视频
- fast.ai 深度学习笔记(一)
绝不原创的飞龙
人工智能人工智能深度学习笔记
深度学习2:第1部分第1课原文:medium.com/@hiromi_suenaga/deep-learning-2-part-1-lesson-1-602f73869197译者:飞龙协议:CCBY-NC-SA4.0来自fast.ai课程的个人笔记。随着我继续复习课程以“真正”理解它,这些笔记将继续更新和改进。非常感谢Jeremy和Rachel给了我这个学习的机会。第一课开始[0:00]:为了训练
- 吴恩达深度学习笔记(15)-浅层神经网络之神经网络概述
极客Array
神经网络概述(NeuralNetworkOverview)从今天开始你将学习如何实现一个神经网络。这里只是一个概述,详细的在后面会讲解,看不懂也没关系,先有个概念,就是前向计算然后后向计算,理解了这个就可以了,有一些公式和表达在后面会详细的讲解。在我们深入学习具体技术之前,我希望快速的带你预览一下后续几天你将会学到的东西。现在我们开始快速浏览一下如何实现神经网络。之前我们讨论了逻辑回归,我们了解了
- Tensorflow实战深度学习笔记一
独立开发者Lau
人类直观能力----人工智能(自然语言理解、图像识别、语音识别等)。经验----机器学习。训练----特征相关度。特征提取深度学习---自动地将简单的特征组合成更加复杂的特征,并使用这些复杂特征解决问题。深度学习--------不等于模仿人类大脑。
- 吴恩达深度学习笔记(82)-深度卷积神经网络的发展史
极客Array
为什么要探索发展史(实例分析)?我们首先来看看一些卷积神经网络的实例分析,为什么要看这些实例分析呢?上周我们讲了基本构建,比如卷积层、池化层以及全连接层这些组件。事实上,过去几年计算机视觉研究中的大量研究都集中在如何把这些基本构件组合起来,形成有效的卷积神经网络。最直观的方式之一就是去看一些案例,就像很多人通过看别人的代码来学习编程一样,通过研究别人构建有效组件的案例是个不错的办法。实际上在计算机
- 深度学习笔记:灾难性遗忘
UQI-LIUWJ
机器学习笔记
1灾难性遗忘介绍当神经网络被训练去学习新的任务时,它可能会完全忘记如何执行它以前学过的任务。这种现象尤其在所谓的“连续学习”(continuouslearning)或“增量学习”(incrementallearning)场景中很常见2不同视角下看待灾难性遗忘以及对应的解决方法2.1从梯度的视角2.1.1从梯度的视角看灾难性遗忘我们有两个不同任务的损失曲面,用平滑的曲面训练完之后,再在坑坑洼洼的曲面
- 深度学习笔记(九)——tf模型导出保存、模型加载、常用模型导出tflite、权重量化、模型部署
絮沫
深度学习深度学习笔记人工智能
文中程序以Tensorflow-2.6.0为例部分概念包含笔者个人理解,如有遗漏或错误,欢迎评论或私信指正。本篇博客主要是工具性介绍,可能由于软件版本问题导致的部分内容无法使用。首先介绍tflite:TensorFlowLite是一组工具,可帮助开发者在移动设备、嵌入式设备和loT设备上运行模型,以便实现设备端机器学习。框架具有的主要特性:延时(数据无需往返服务器)隐私(没有任何个人数据离开设备)
- 深度学习笔记(八)——构建网络的常用辅助增强方法:数据增强扩充、断点续训、可视化和部署预测
絮沫
深度学习深度学习笔记人工智能
文中程序以Tensorflow-2.6.0为例部分概念包含笔者个人理解,如有遗漏或错误,欢迎评论或私信指正。截图和程序部分引用自北京大学机器学习公开课要构建一个完善可用的神经网络,除了设计网络结构以外,还需要添加一些辅助代码来增强网络运行的稳定性,鲁棒性。可以用来增强的方向主要有个,首先是数据输入前的预处理环节,其次是数据在训练过程中的优化,最后的数据在训练结束后的导出和可视化,同时能够及时保存结
- 深度学习笔记(七)——基于Iris/MNIST数据集构建基础的分类网络算法实战
絮沫
深度学习算法深度学习笔记
文中程序以Tensorflow-2.6.0为例部分概念包含笔者个人理解,如有遗漏或错误,欢迎评论或私信指正。截图和程序部分引用自北京大学机器学习公开课认识网络的构建结构在神经网络的构建过程中,都避不开以下几个步骤:导入网络和依赖模块原始数据处理和清洗加载训练和测试数据构建网络结构,确定网络优化方法将数据送入网络进行训练,同时判断预测效果保存模型部署算法,使用新的数据进行预测推理使用Keras快速构
- 《动手学深度学习》学习笔记 第10章 注意力机制
北方骑马的萝卜
《手动深度学习》笔记深度学习学习笔记
本系列为《动手学深度学习》学习笔记书籍链接:动手学深度学习笔记是从第四章开始,前面三章为基础知识,有需要的可以自己去看看关于本系列笔记:书里为了让读者更好的理解,有大篇幅的描述性的文字,内容很多,笔记只保留主要内容,同时也是对之前知识的查漏补缺《动手学深度学习》学习笔记第4章多层感知机《动手学深度学习》学习笔记第5章深度学习计算《动手学深度学习》学习笔记第6章卷积神经网络《动手学深度学习》学习笔记
- 深度学习笔记(六)——网络优化(2):参数更新优化器SGD、SGDM、AdaGrad、RMSProp、Adam
絮沫
深度学习深度学习笔记人工智能
文中程序以Tensorflow-2.6.0为例部分概念包含笔者个人理解,如有遗漏或错误,欢迎评论或私信指正。截图和程序部分引用自北京大学机器学习公开课前言在前面的博文中已经学习了构建神经网络的基础需求,搭建了一个简单的双层网络结构来实现数据的分类。并且了解了激活函数和损失函数在神经网络中发挥的重要用途,其中,激活函数优化了神经元的输出能力,损失函数优化了反向传播时参数更新的趋势。我们知道在简单的反
- 李沐—动手学深度学习笔记
比三毛多一根头发
笔记
目录引言1.2机器学习中的关键组件1.3.1监督学习2.预备知识2.1数据操作2.1.3.广播机制2.1.4.索引和切片2.1.5.节省内存2.1.6.转换为其他Python对象2.2.数据预处理2.2.1.读取数据集2.2.2.处理缺失值2.2.3.转换为张量格式2.3.线性代数2.3.2.向量2.3.5.张量算法的基本性质2.3.6.降维3.线性神经网络4.多层感知机4.1多层感知机4.1.1
- 深度学习笔记(四)——使用TF2构建基础网络的常用函数+简单ML分类实现
絮沫
深度学习深度学习笔记分类
文中程序以Tensorflow-2.6.0为例部分概念包含笔者个人理解,如有遗漏或错误,欢迎评论或私信指正。截图和程序部分引用自北京大学机器学习公开课TF2基础常用函数1、张量处理类强制数据类型转换:a1=tf.constant([1,2,3],dtype=tf.float64)print(a1)a2=tf.cast(a1,tf.int64)#强制数据类型转换print(a2)查找数据中的最小值和
- 深度学习笔记(三)——NN网络基础概念(神经元模型,梯度下降,反向传播,张量处理)
絮沫
深度学习深度学习笔记网络
文中程序以Tensorflow-2.6.0为例部分概念包含笔者个人理解,如有遗漏或错误,欢迎评论或私信指正。截图部分引用自北京大学机器学习公开课人工智能算法的主流分类首先明白一个概念,广义上的人工智能算法并不是只有MachineLearning或DeepLearning,而是一个相对的,能够使用计算机模拟人类智能在一定场景下自动实现一些功能。所以系统控制论中的很多最优控制算法同样可以称之为智能算法
- 深度学习笔记(五)——网络优化(1):学习率自调整、激活函数、损失函数、正则化
絮沫
深度学习深度学习笔记网络tensorflow
文中程序以Tensorflow-2.6.0为例部分概念包含笔者个人理解,如有遗漏或错误,欢迎评论或私信指正。截图和程序部分引用自北京大学机器学习公开课通过学习已经掌握了主要的基础函数之后具备了搭建一个网络并使其正常运行的能力,那下一步我们还需要进一步对网络中的重要节点进行优化并加深认知。首先我们知道NN(自然神经)网络算法能够相比传统建模类算法发挥更好效果的原因是网络对复杂非线性函数的拟合效果更好
- 《动手学深度学习》学习笔记 第9章 现代循环神经网络
北方骑马的萝卜
《手动深度学习》笔记深度学习学习笔记
本系列为《动手学深度学习》学习笔记书籍链接:动手学深度学习笔记是从第四章开始,前面三章为基础知识,有需要的可以自己去看看关于本系列笔记:书里为了让读者更好的理解,有大篇幅的描述性的文字,内容很多,笔记只保留主要内容,同时也是对之前知识的查漏补缺9.现代循环神经网络 前一章中我们介绍了循环神经网络的基础知识,这种网络可以更好地处理序列数据。我们在文本数据上实现了基于循环神经网络的语言模型,但是对于
- 《动手学深度学习》学习笔记 第8章 循环神经网络
北方骑马的萝卜
《手动深度学习》笔记深度学习学习笔记
本系列为《动手学深度学习》学习笔记书籍链接:动手学深度学习笔记是从第四章开始,前面三章为基础知识,有需要的可以自己去看看关于本系列笔记:书里为了让读者更好的理解,有大篇幅的描述性的文字,内容很多,笔记只保留主要内容,同时也是对之前知识的查漏补缺8.循环神经网络 到目前为止我们默认数据都来自于某种分布,并且所有样本都是独立同分布的(independentlyandidenticallydistri
- 深度学习笔记(二)——Tensorflow环境的安装
絮沫
深度学习深度学习笔记tensorflow
本篇文章只做基本的流程概述,不阐述具体每个软件的详细安装流程,具体的流程网上教程已经非常丰富。主要是给出完整的安装流程,以供参考环境很重要一个好的算法环境往往能够帮助开发者事半功倍,入门学习的时候往往搭建好环境就已经成功了一半。在机器学习或者深度学习的设计研究中,人们往往会使用已经有的网络框架来构建网络模型和设计各种识别分类或者生成算法。主要可以给我们学习和使用的框架这里推荐两个:Tensorfl
- 2022-01-23 深度学习笔记
Luo_淳
专业学习深度学习人工智能
深度学习笔记引言:机器学习——自动寻找函数。1.你想要找什么函数?①Regression——Theoutputofthefunctionisascalar.②BinaryClassification——OnlyoutputYesorNo.举例:输入句子,输出句子positive还是negtive。③Multi-classClassification——分类,输入图片,输出图片中物品的类型。
- 深度学习笔记:下载鸢尾花数据集,并展示所有的属性
BioVS
pythontensorflownumpy
背景:深度学习课程作业。通过此作业,可了解tensorflow、matplotlib、pandas和numpy。可学习到matplot画图及细节设计,如图的颜色、字体大小、循环画图方法等代码:importtensorflowastfimportmatplotlib.pyplotaspltimportpandasaspdimportnumpyasnpTRAIN_URL="http://downloa
- 矩阵求逆(JAVA)初等行变换
qiuwanchi
矩阵求逆(JAVA)
package gaodai.matrix;
import gaodai.determinant.DeterminantCalculation;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
/**
* 矩阵求逆(初等行变换)
* @author 邱万迟
*
- JDK timer
antlove
javajdkschedulecodetimer
1.java.util.Timer.schedule(TimerTask task, long delay):多长时间(毫秒)后执行任务
2.java.util.Timer.schedule(TimerTask task, Date time):设定某个时间执行任务
3.java.util.Timer.schedule(TimerTask task, long delay,longperiod
- JVM调优总结 -Xms -Xmx -Xmn -Xss
coder_xpf
jvm应用服务器
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。
典型设置:
java -Xmx
- JDBC连接数据库
Array_06
jdbc
package Util;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
public class JDBCUtil {
//完
- Unsupported major.minor version 51.0(jdk版本错误)
oloz
java
java.lang.UnsupportedClassVersionError: cn/support/cache/CacheType : Unsupported major.minor version 51.0 (unable to load class cn.support.cache.CacheType)
at org.apache.catalina.loader.WebappClassL
- 用多个线程处理1个List集合
362217990
多线程threadlist集合
昨天发了一个提问,启动5个线程将一个List中的内容,然后将5个线程的内容拼接起来,由于时间比较急迫,自己就写了一个Demo,希望对菜鸟有参考意义。。
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.CountDownLatch;
public c
- JSP简单访问数据库
香水浓
sqlmysqljsp
学习使用javaBean,代码很烂,仅为留个脚印
public class DBHelper {
private String driverName;
private String url;
private String user;
private String password;
private Connection connection;
privat
- Flex4中使用组件添加柱状图、饼状图等图表
AdyZhang
Flex
1.添加一个最简单的柱状图
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
<?xml version=
"1.0"&n
- Android 5.0 - ProgressBar 进度条无法展示到按钮的前面
aijuans
android
在低于SDK < 21 的版本中,ProgressBar 可以展示到按钮前面,并且为之在按钮的中间,但是切换到android 5.0后进度条ProgressBar 展示顺序变化了,按钮再前面,ProgressBar 在后面了我的xml配置文件如下:
[html]
view plain
copy
<RelativeLa
- 查询汇总的sql
baalwolf
sql
select list.listname, list.createtime,listcount from dream_list as list , (select listid,count(listid) as listcount from dream_list_user group by listid order by count(
- Linux du命令和df命令区别
BigBird2012
linux
1,两者区别
du,disk usage,是通过搜索文件来计算每个文件的大小然后累加,du能看到的文件只是一些当前存在的,没有被删除的。他计算的大小就是当前他认为存在的所有文件大小的累加和。
- AngularJS中的$apply,用还是不用?
bijian1013
JavaScriptAngularJS$apply
在AngularJS开发中,何时应该调用$scope.$apply(),何时不应该调用。下面我们透彻地解释这个问题。
但是首先,让我们把$apply转换成一种简化的形式。
scope.$apply就像一个懒惰的工人。它需要按照命
- [Zookeeper学习笔记十]Zookeeper源代码分析之ClientCnxn数据序列化和反序列化
bit1129
zookeeper
ClientCnxn是Zookeeper客户端和Zookeeper服务器端进行通信和事件通知处理的主要类,它内部包含两个类,1. SendThread 2. EventThread, SendThread负责客户端和服务器端的数据通信,也包括事件信息的传输,EventThread主要在客户端回调注册的Watchers进行通知处理
ClientCnxn构造方法
&
- 【Java命令一】jmap
bit1129
Java命令
jmap命令的用法:
[hadoop@hadoop sbin]$ jmap
Usage:
jmap [option] <pid>
(to connect to running process)
jmap [option] <executable <core>
(to connect to a
- Apache 服务器安全防护及实战
ronin47
此文转自IBM.
Apache 服务简介
Web 服务器也称为 WWW 服务器或 HTTP 服务器 (HTTP Server),它是 Internet 上最常见也是使用最频繁的服务器之一,Web 服务器能够为用户提供网页浏览、论坛访问等等服务。
由于用户在通过 Web 浏览器访问信息资源的过程中,无须再关心一些技术性的细节,而且界面非常友好,因而 Web 在 Internet 上一推出就得到
- unity 3d实例化位置出现布置?
brotherlamp
unity教程unityunity资料unity视频unity自学
问:unity 3d实例化位置出现布置?
答:实例化的同时就可以指定被实例化的物体的位置,即 position
Instantiate (original : Object, position : Vector3, rotation : Quaternion) : Object
这样你不需要再用Transform.Position了,
如果你省略了第二个参数(
- 《重构,改善现有代码的设计》第八章 Duplicate Observed Data
bylijinnan
java重构
import java.awt.Color;
import java.awt.Container;
import java.awt.FlowLayout;
import java.awt.Label;
import java.awt.TextField;
import java.awt.event.FocusAdapter;
import java.awt.event.FocusE
- struts2更改struts.xml配置目录
chiangfai
struts.xml
struts2默认是读取classes目录下的配置文件,要更改配置文件目录,比如放在WEB-INF下,路径应该写成../struts.xml(非/WEB-INF/struts.xml)
web.xml文件修改如下:
<filter>
<filter-name>struts2</filter-name>
<filter-class&g
- redis做缓存时的一点优化
chenchao051
redishadooppipeline
最近集群上有个job,其中需要短时间内频繁访问缓存,大概7亿多次。我这边的缓存是使用redis来做的,问题就来了。
首先,redis中存的是普通kv,没有考虑使用hash等解结构,那么以为着这个job需要访问7亿多次redis,导致效率低,且出现很多redi
- mysql导出数据不输出标题行
daizj
mysql数据导出去掉第一行去掉标题
当想使用数据库中的某些数据,想将其导入到文件中,而想去掉第一行的标题是可以加上-N参数
如通过下面命令导出数据:
mysql -uuserName -ppasswd -hhost -Pport -Ddatabase -e " select * from tableName" > exportResult.txt
结果为:
studentid
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
先下载PHPEXCEL类文件,放在class目录下面,然后新建一个index.php文件,内容如下
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('
- 爱情格言
dcj3sjt126com
格言
1) I love you not because of who you are, but because of who I am when I am with you. 我爱你,不是因为你是一个怎样的人,而是因为我喜欢与你在一起时的感觉。 2) No man or woman is worth your tears, and the one who is, won‘t
- 转 Activity 详解——Activity文档翻译
e200702084
androidUIsqlite配置管理网络应用
activity 展现在用户面前的经常是全屏窗口,你也可以将 activity 作为浮动窗口来使用(使用设置了 windowIsFloating 的主题),或者嵌入到其他的 activity (使用 ActivityGroup )中。 当用户离开 activity 时你可以在 onPause() 进行相应的操作 。更重要的是,用户做的任何改变都应该在该点上提交 ( 经常提交到 ContentPro
- win7安装MongoDB服务
geeksun
mongodb
1. 下载MongoDB的windows版本:mongodb-win32-x86_64-2008plus-ssl-3.0.4.zip,Linux版本也在这里下载,下载地址: http://www.mongodb.org/downloads
2. 解压MongoDB在D:\server\mongodb, 在D:\server\mongodb下创建d
- Javascript魔法方法:__defineGetter__,__defineSetter__
hongtoushizi
js
转载自: http://www.blackglory.me/javascript-magic-method-definegetter-definesetter/
在javascript的类中,可以用defineGetter和defineSetter_控制成员变量的Get和Set行为
例如,在一个图书类中,我们自动为Book加上书名符号:
function Book(name){
- 错误的日期格式可能导致走nginx proxy cache时不能进行304响应
jinnianshilongnian
cache
昨天在整合某些系统的nginx配置时,出现了当使用nginx cache时无法返回304响应的情况,出问题的响应头: Content-Type:text/html; charset=gb2312 Date:Mon, 05 Jan 2015 01:58:05 GMT Expires:Mon , 05 Jan 15 02:03:00 GMT Last-Modified:Mon, 05
- 数据源架构模式之行数据入口
home198979
PHP架构行数据入口
注:看不懂的请勿踩,此文章非针对java,java爱好者可直接略过。
一、概念
行数据入口(Row Data Gateway):充当数据源中单条记录入口的对象,每行一个实例。
二、简单实现行数据入口
为了方便理解,还是先简单实现:
<?php
/**
* 行数据入口类
*/
class OrderGateway {
/*定义元数
- Linux各个目录的作用及内容
pda158
linux脚本
1)根目录“/” 根目录位于目录结构的最顶层,用斜线(/)表示,类似于
Windows
操作系统的“C:\“,包含Fedora操作系统中所有的目录和文件。 2)/bin /bin 目录又称为二进制目录,包含了那些供系统管理员和普通用户使用的重要
linux命令的二进制映像。该目录存放的内容包括各种可执行文件,还有某些可执行文件的符号连接。常用的命令有:cp、d
- ubuntu12.04上编译openjdk7
ol_beta
HotSpotjvmjdkOpenJDK
获取源码
从openjdk代码仓库获取(比较慢)
安装mercurial Mercurial是一个版本管理工具。 sudo apt-get install mercurial
将以下内容添加到$HOME/.hgrc文件中,如果没有则自己创建一个: [extensions] forest=/home/lichengwu/hgforest-crew/forest.py fe
- 将数据库字段转换成设计文档所需的字段
vipbooks
设计模式工作正则表达式
哈哈,出差这么久终于回来了,回家的感觉真好!
PowerDesigner的物理数据库一出来,设计文档中要改的字段就多得不计其数,如果要把PowerDesigner中的字段一个个Copy到设计文档中,那将会是一件非常痛苦的事情。