- 【人工智能】Python常用库-Keras:高阶深度学习 API
IT古董
深度学习人工智能Python人工智能python深度学习
Keras:高阶深度学习APIKeras是一个高效、用户友好的深度学习框架,作为TensorFlow的高级API,支持快速构建和训练深度学习模型。它以模块化、简单和灵活著称,适合研究和生产环境。Keras的发音为[ˈkerəs],类似于“凯拉斯”或“克拉斯”。这个名字来源于希腊语κέρας(kéras),意思是“角”或“角质物”。这个词与深度学习的灵感来源——大脑的神经网络结构有一定联系。Kera
- 小土堆学习笔记10(利用GPU训练于模型验证)
干啥都是小小白
pytorch学习——小土堆学习笔记深度学习
1.利用GPU训练GPU可优化操作如下操作方法1方法2数据获取判断是否可以使用GPU,如果可以直接model.cuda()先设定device,用的时候直接model.to(“device”)损失函数1.1利用以前实战模型训练(经过完整测试最高到70%左右的正确率)实战模型如下:小土堆学习笔记5(sequential与小实战)-CSDN博客具体代码如下:classmymodel(Module):de
- 【大模型应用开发 动手做AI Agent】AutoGen
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
【大模型应用开发动手做AIAgent】AutoGen关键词:自动生成(AutoGeneration)AI代理(Agent)大型语言模型AutoGen框架自定义任务生成1.背景介绍1.1问题的由来在当今的AI领域,大型语言模型因其强大的文本生成能力而受到广泛关注。这些模型通常在大规模文本数据集上进行预训练,以便能够生成与上下文相关的高质量文本。然而,对于特定领域或特定任务的需求,往往需要对这些通用模
- 【强化学习】Unity ML-Agents框架
大雨淅淅
人工智能unity游戏引擎机器学习人工智能深度学习学习
目录一、UnityML-Agents简介二、安装与配置三、基础使用四、关键技术点五、进阶技巧与案例分析六、学习资源七、常见问题与解决方案八、实战项目与案例研究九、未来展望与发展趋势十、结语一、UnityML-Agents简介UnityML-Agents是一个由UnityTechnologies开发的开源项目,它允许开发者利用机器学习技术来训练虚拟环境中的智能代理(Agent)。无论是希望创建更逼真
- python3.6 split用法_对sklearn的使用之数据集的拆分与训练详解(python3.6)
weixin_39849054
python3.6split用法
研修课上讲了两个例子,融合一下。主要演示大致的过程:导入->拆分->训练->模型报告以及几个重要问题:①标签二值化②网格搜索法调参③k折交叉验证④增加噪声特征(之前涉及)fromsklearnimportdatasets#从cross_validation导入会出现warning,说已弃用fromsklearn.model_selectionimporttrain-test_splitfromsk
- 论文笔记 U-Net: Convolutional Networks for Biomedical Image Segmentation
城南皮卡丘
#深度学习caffe人工智能
摘要:人们普遍认为,深度网络的成功训练需要数千个带注释的训练样本。在本文中,我们提出了一种网络和训练策略,该策略依赖于大量使用数据增强来更有效地使用可用的注释样本。该体系结构包括用于捕获上下文的收缩路径和用于实现精确定位的对称扩展路径。我们表明,这样的网络可以从很少的图像进行端到端训练,并且在ISBI挑战中优于先前的最佳方法(滑动窗口卷积网络),用于分割电子显微堆栈中的神经元结构。使用在透射光显微
- 第十九周:SSD(Single Shot MultiBox Detector)
L-含光承影
目标跟踪人工智能计算机视觉
SSD(SingleShotMultiBoxDetector)摘要Abstract1引言2SSD框架2.1设计理念2.2训练2.3预测3创新与不足总结参考摘要本篇博客介绍了SSD(SingleShotMultiBoxDetector),这是一种基于全卷积网络的单阶段目标检测模型。与双阶段检测模型(如FasterR-CNN)相比,SSD在保持较高检测精度的同时,显著提升了检测速度,使其更适用于实时检
- 宇宙规律对可转移量子强化学习架构的启示
AI天才研究院
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
第1章引言:宇宙规律与量子强化学习架构1.1问题背景宇宙规律是指宇宙中普遍存在的自然规律,如物理学中的万有引力定律、量子力学中的不确定性原理等。这些规律对宇宙的运行和演化起着决定性的作用。随着科技的发展,人们开始意识到这些宇宙规律可能对人工智能领域,尤其是量子强化学习架构的设计和优化有着深远的启示。量子强化学习是一种结合了量子计算和强化学习的新型机器学习方法。它利用量子计算机的优势,在训练和优化模
- 【教程】Ollama 部署 MindSpore 训练的大模型
Hsiayukoo
llamapython
gguf-mindspore本项目(gguf-mindspore)帮助用户快速的将MindSpore生成的大模型的ckpt文件,转换为Ollama可以加载的GGUF格式文件,主要思路是针对已有的如Huggingface上的对应模型的GGUF文件,利用MindSpore生成的ckpt文件,替换掉GGUF文件中的张量信息部分,生成自己的GGUF文件。依赖gguf==0.6.0mindsporenump
- LLama 架构一览
Debroon
llama
LLama架构一览预训练Transformer架构RMSNorm归一化:为什么大模型llama选RMSNorm,而不是其他?SwiGLU激活函数:为什么大模型llama选SwiGLU激活函数,而不是其他?RoPE旋转位置编码:为什么大模型llama选RoPE旋转位置编码,而不是其他?GQA分组查询注意力:为什么大模型llama选GQA分组查询注意力,而不是其他?KVCache推理加速llama、l
- DETRs with Collaborative Hybrid Assignments Training论文阅读与代码
分享总结快乐
论文阅读
关键词:协作混合分配训练【目标检测】Co-DETR:ATSS+FasterRCNN+DETR协作的先进检测器(ICCV2023)-CSDN博客摘要:在这篇论文中,作者观察到在DETR中将过少的Query分配为正样本,采用一对一的集合匹配,会导致对编码器输出的监督稀疏,严重损害编码器的区分特征学习,反之亦然,也会影响解码器中的注意力学习。为了缓解这个问题,作者提出了一种新颖的协同混合分配训练方案,名
- Docker部署nnunetv2简洁教程
Tiandaren
模型部署docker容器运维pytorch人工智能深度学习python
前言:感觉一些教程没必要说那么多,直接贴出重点的配置文件。如果有不懂的,可以把此文档丢给gpt,配合自己的环境一同服用。首先,在nnunet路径下创建一个Dockerfile。由于我已经完成了nnUNet的训练,所以不需要将相关数据全部上传到容器中,而是只保留源码。#使用适当的基础镜像(如pytorch官方镜像)FROMpytorch/pytorch:latest#更新apt-get并安装必要的工
- Grape-RAG
disgare
AIai
Grape-RAG传统RAG的局限性图的优点用知识图谱来呈现数据关系GraphRAG传统RAG的局限性经典的RAG架构以向量数据库(VectorDB)为核心来检索语义相似性上下文,让大语言模型(LLM)不需要重新训练就能够获取最新的知识,其工作流如下图所示:这一架构目前广泛应用于各类AI业务场景中,例如问答机器人、智能客服、私域知识库检索等等。虽然RAG通过知识增强一定程度上缓解了LLM幻觉问题,
- 一行代码搞定加载glove预训练词向量
peanutwang
python机器学习人工智能
加载glove预训练词向量再也不用glove2word2vec转换啦!以前加载glove预训练词向量的方法fromgensim.scripts.glove2word2vecimportglove2word2vecglove2word2vec('glove.6B.50d.txt','word2vec50d.txt')其实就是在原来的txt文件前面加上了一行信息,行和列。word10.1230.134
- 【Vim Masterclass 笔记22】S09L40 + L41:同步练习11:Vim 的配置与 vimrc 文件的相关操作(含点评课内容)
安冬的码畜日常
VimMasterclassvim笔记vim配置vim同步练习vimoptionsvimoption-list
文章目录S09L40Exercise11-VimSettingsandtheVimrcFile1训练目标2操作指令2.1.打开vimrc-sample文件2.2.尝试各种选项与设置2.3.将更改内容保存到vimrc-sample文件2.4.将文件vimrc-sample的内容复制到寄存器2.5.创建专属vimrc文件2.6.对于Mac、Linux或Unix用户2.7.对于Windows用户2.8.
- 细嗦Transformer(三):准备训练,讲解及代码实现优化器、学习率调整策略、正则化和KL散度损失
Ace_bb
算法LLMtransformer
文章目录关注我:细嗦大模型批处理对象/BatchesandMasking训练循环主函数/TrainingLoop优化器/Optimizer学习率调整策略/Learningrateadjustmentstrategy样例测试正则化/RegularizationLabelsmoothing标签平滑KL散度损失样例测试Github完整代码----求求了给个star和关注吧参考资料求求了,给个star和关
- 【人工智能 | 大数据】基于人工智能的大数据分析方法
用心去追梦
人工智能大数据数据分析
基于人工智能(AI)的大数据分析方法是指利用机器学习、深度学习和其他AI技术来分析和处理大规模数据集。这些方法能够自动识别模式、提取有用信息,并做出预测或决策,从而帮助企业和组织更好地理解市场趋势、客户行为以及其他关键因素。以下是几种主要的基于AI的大数据分析方法:机器学习模型:通过训练算法让计算机从历史数据中学习并做出预测或分类。常见的机器学习技术包括监督学习(如回归分析、支持向量机)、非监督学
- 深度学习中超参数
fengbingchun
DeepLearninghyperparameter
深度学习中的超参数(hyperparameters)是决定网络结构的变量(例如隐藏层数量)和决定网络训练方式的变量(例如学习率)。超参数的选择会显著影响训练模型所需的时间,也会影响模型的性能。超参数是在训练开始之前设置的,而不是从数据中学习的参数。超参数是模型训练期间无法学习的参数,需要事先设置。在深度学习中,模型由模型参数(如神经网络的权重和偏置)定义或表示。然而,训练模型的过程涉及选择最佳超参
- 深入解析CANN算子开发:TBE与AI CPU算子类型及其开发方法全指南
快撑死的鱼
华为昇腾AscendC的算子开发系统学习人工智能
深入解析CANN算子开发:TBE与AICPU算子类型及其开发方法全指南在现代AI计算领域中,高效的算子开发对于优化深度学习模型的推理与训练至关重要。CANN(ComputeArchitectureforNeuralNetworks)作为华为AscendAI处理器的开发平台,提供了两种类型的算子开发支持:TBE算子和AICPU算子。每种算子类型针对不同的计算任务和硬件架构,开发者需要根据具体场景选择
- 解锁辅助驾驶新境界:基于昇腾 AI 异构计算架构 CANN 的应用探秘
倔强的石头_
AIGC人工智能架构
博客主页:倔强的石头的CSDN主页Gitee主页:倔强的石头的gitee主页⏩文章专栏:《AI大模型》期待您的关注目录一、引言二、CANN是什么1.异构计算与人工智能的关系2.CANN的定义和作用3.CANN的技术优势三、基于CANN的辅助驾驶AI应用原理1.目标检测算法2.智能检测流程3.算力平台支持四、基于CANN的辅助驾驶AI优势1.高效训练2.精准检测3.快速编程4.产业应用五、部署实操六
- C语言经典例题100道
尘泪bit
C语言经典100例算法分析c语言算法开发语言
程序【5】题目:输入三个整数x,y,z,请把这三个数由小到大输出。用的编译环境是vs2022,对于scanf()该函数有要求必须声明,scanf_s(),可根据自己环境要求自行去掉_s改成scanf()。在这里因为对自己的要求,训练自己,采用了两种方法。一种是大众版好理解的,另一种是通过数组比较繁琐的写法,数组的写法完全是锻炼自己使用数组的能力,正常情况下,还是以第一种写法为准。第一种写法:#in
- 全国青少年信息学奥林匹克竞赛(信奥赛)备考实战之一维数组(应用技巧)
律己杂谈
信奥赛信奥赛c++算法数据结构
二、一维数组应用技巧2:打标记实战训练1—开关灯问题描述:有M个从1到M依次编号的人参加一项游戏。将K盏从1到K依次编号的灯(K和M均为正整数,M≤K≤5000)进行一系列的熄灭与打开的操作,游戏开始时均处于亮灯的状态;第一个人(1号)将灯全部熄灭;第二个人(2号)将编号为2的倍数的灯做相反处理(即将打开的灯熄灭,将熄灭的灯打开);第三个人(3号)将编号为3的倍数的灯做相反处理;依照编号递增顺序,
- 知识图谱中的word2vec 技术是做什么的?
kcarly
知识图谱入门知识图谱word2vec人工智能
Word2Vec是一种将单词转换为向量表示的技术,由Google在2013年提出。这项技术的核心思想是通过大规模文本数据训练神经网络模型,从而将单词映射到低维稠密的向量空间中。这些向量能够捕捉到单词之间的语义和语法关系,使得相似或相关的单词在向量空间中彼此靠近。Word2Vec的基本原理Word2Vec主要包括两种训练模型:CBOW(ContinuousBagofWords)和Skip-gram。
- 改进yolov8工业缺陷检测+swin+transformer
qq1309399183
计算机视觉实战项目集合YOLOtransformer深度学习人工智能计算机视觉机器学习神经网络
使用NEU-DET数据集进行缺陷检测的YOLOv8改进模型应用详解在现代工业生产过程中,质量控制是至关重要的一个环节。随着机器视觉技术和人工智能算法的发展,基于深度学习的方法已经成为自动化缺陷检测的重要工具。本篇将介绍一种基于NEU-DET数据集,利用YOLOv8及其改进版本(包含坐标注意力机制和SwinTransformer)进行缺陷检测的应用开发过程。我们将详细探讨从数据准备到模型训练,再到最
- 基于 Python 的机器学习模型部署到 Flask Web 应用:从训练到部署的完整指南
m0_74825223
python机器学习flask
目录引言技术栈步骤一:数据预处理步骤二:训练机器学习模型步骤三:创建FlaskWeb应用步骤四:测试Web应用步骤五:模型的保存与加载保存模型加载模型并在Flask中使用步骤六:Web应用的安全性考量示例:简单的输入验证示例:自定义错误处理示例:使用Flask-JWT-Extended进行认证结论参考资料引言在当今数据驱动的时代,机器学习模型已经广泛应用于各行各业,从金融、医疗到教育等领域。然而,
- 大模型GUI系列论文阅读 DAY2续:《一个具备规划、长上下文理解和程序合成能力的真实世界Web代理》
feifeikon
论文阅读
摘要预训练的大语言模型(LLMs)近年来在自主网页自动化方面实现了更好的泛化能力和样本效率。然而,在真实世界的网站上,其性能仍然受到以下问题的影响:(1)开放领域的复杂性,(2)有限的上下文长度,(3)在HTML结构上的归纳偏差不足。我们提出WebAgent,一个由LLM驱动的智能代理,能够通过自我学习的方式,在真实网站上按照自然语言指令完成任务。WebAgent通过将指令提前规划,将其分解为子指
- 改进yolov8缺陷检测+swin+transformer
QQ_1309399183
计算机视觉实战项目集锦YOLOtransformer深度学习人工智能计算机视觉opencv机器学习
使用NEU-DET数据集进行缺陷检测的YOLOv8改进模型应用详解在现代工业生产过程中,质量控制是至关重要的一个环节。随着机器视觉技术和人工智能算法的发展,基于深度学习的方法已经成为自动化缺陷检测的重要工具。本篇将介绍一种基于NEU-DET数据集,利用YOLOv8及其改进版本(包含坐标注意力机制和SwinTransformer)进行缺陷检测的应用开发过程。我们将详细探讨从数据准备到模型训练,再到最
- 机器学习:scikit-learn 和 Jupyter Notebook(推荐初学者使用google colab)
wyc9999ww
机器学习scikit-learnjupyter人工智能python
对于初学者来说,scikit-learn是一个理想的机器学习入门工具。不仅提供了丰富的算法和功能,还通过一致的API设计,确保能够快速上手并进行各种机器学习任务。通过使用scikit-learn,可以专注于理解和实践机器学习的核心概念,而不必过多担心底层实现细节。所以scikit-learn能轻松实现从数据预处理到模型训练和评估的完整流程。此外在推荐一个适合初学者的深度学习平台工具googleco
- vscode accelerate deepspeed配置
Ctrl_Cver
vscodeide编辑器
accelerate训练{//UseIntelliSensetolearnaboutpossibleattributes.//Hovertoviewdescriptionsofexistingattributes.//Formoreinformation,visit:https://go.microsoft.com/fwlink/?linkid=830387"version":"0.2.0","c
- 迁移学习与RBF神经网络
fanxbl957
人工智能理论与实践迁移学习神经网络人工智能
迁移学习与RBF神经网络一、引言在机器学习和深度学习领域,迁移学习和神经网络都是备受关注的重要技术。迁移学习旨在将从一个或多个源任务中学习到的知识应用到目标任务中,以加快目标任务的学习过程,提高学习效果,尤其在数据稀缺或训练资源有限的情况下展现出显著优势。而RBF(径向基函数)神经网络作为一种经典的神经网络结构,以其独特的函数逼近能力和良好的局部逼近特性,在众多领域取得了出色的性能表现。将迁移学习
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$