Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, ...) which sum to n.
For example, given n = 12, return 3 because 12 = 4 + 4 + 4; given n = 13, return 2 because 13 = 4 + 9.
直接binary search 不对是因为
12 = 4 + 4 + 4
而不等于
12 = 9 + 1 + 1 + 1
Solution1:DP
思路: num最小的一定是历来的结果上再加一个perfect square number(1, 4, 9..),所以dp历来的结果,dp[n] = Min{ dp[n - ii] + 1 }, n - ii >=0 && i >= 1 for all i,找除最小。
Demonstration:
dp[0] = 0
dp[1] = dp[0]+1 = 1
dp[2] = dp[1]+1 = 2
dp[3] = dp[2]+1 = 3
dp[4] = Min{ dp[4-1*1]+1, dp[4-2*2]+1 }
= Min{ dp[3]+1, dp[0]+1 }
= 1
dp[5] = Min{ dp[5-1*1]+1, dp[5-2*2]+1 }
= Min{ dp[4]+1, dp[1]+1 }
= 2
.
.
.
dp[13] = Min{ dp[13-1*1]+1, dp[13-2*2]+1, dp[13-3*3]+1 }
= Min{ dp[12]+1, dp[9]+1, dp[4]+1 }
= 2
.
.
.
dp[n] = Min{ dp[n - i*i] + 1 }, n - i*i >=0 && i >= 1
Time Complexity: O(n^1.5) Space Complexity: O(N)
Solution1.5:DP Round1
Time Complexity: O(n^1.5) Space Complexity: O(N)
Solution2:BFS
思路: 在perfect_numbers的基础上 bfsly加上perfect_numbers去找是否等于N,第一个level的结果放入queue继续一下个level找,因为是bfs所以找的话就是least number。建立visited数组避免重复入queue
Time Complexity: O((N1/2)2 = N) Space Complexity: O(N)
Solution3:Math
思路:
// Based on Lagrange's Four Square theorem, there
// are only 4 possible results: 1, 2, 3, 4.
...
reference: https://leetcode.com/problems/perfect-squares/discuss/
(Temporally skip)
Time Complexity: O(1) Space Complexity: O(1)
Solution1 Code:
class Solution {
public int numSquares(int n) {
int[] dp = new int[n + 1];
Arrays.fill(dp, Integer.MAX_VALUE);
dp[0] = 0;
for(int i = 1; i <= n; ++i) {
int min = Integer.MAX_VALUE;
int j = 1;
while(i - j * j >= 0) {
min = Math.min(min, dp[i - j * j] + 1); // 1 for add one j * j
++j;
}
dp[i] = min;
}
return dp[n];
}
}
Solution1.5 Round1 Code:
class Solution {
public int numSquares(int n) {
List square_list = new ArrayList<>();
int[] dp = new int[n + 1];
dp[0] = 0;
dp[1] = 1;
square_list.add(1);
for(int i = 2; i <= n; i++) {
if(isSquareNum(i)) {
square_list.add(i);
}
int min_count = Integer.MAX_VALUE;
for(int square: square_list) {
int cur_count = 1 + dp[i - square];
min_count = Math.min(min_count, cur_count);
}
dp[i] = min_count;
}
return dp[n];
}
private boolean isSquareNum(int n) {
int root = (int)Math.sqrt(n);
if(root * root == n) {
return true;
}
else {
return false;
}
}
}
Solution2 Code:
class Solution {
public int numSquares(int n) {
List perfect_squares = new ArrayList<>();
Queue queue = new LinkedList<>();
boolean[] visited = new boolean[n];
int level = 1;
for(int i = 1; i * i <= n; i++) {
if(i * i == n) { // direct case
return level;
}
perfect_squares.add(i * i);
queue.offer(i * i);
}
while(!queue.isEmpty()) {
level++;
int num_on_level = queue.size();
for(int i = 0; i < num_on_level; i++) {
int num = queue.poll();
for(int ps: perfect_squares) {
int new_num = num + ps;
if(new_num == n) {
return level;
}
else if(new_num < n && !visited[new_num - 1]) {
queue.offer(new_num);
visited[new_num - 1] = true;
}
else if(new_num > n){
// no need to consider the nodes which are greater than n.
break;
}
}
}
}
return level;
}
}