- Python 机器学习 基础 之 数据表示与特征工程 【分箱、离散化、线性模型与树 / 交互特征与多项式特征】的简单说明
仙魁XAN
Python机器学习基础+实战案例机器学习python分箱离散化线性模型与树交互特征与多项式特征
Python机器学习基础之数据表示与特征工程【分箱、离散化、线性模型与树/交互特征与多项式特征】的简单说明目录Python机器学习基础之数据表示与特征工程【分箱、离散化、线性模型与树/交互特征与多项式特征】的简单说明一、简单介绍二、分箱、离散化、线性模型与树三、交互特征与多项式特征附录一、参考文献一、简单介绍Python是一种跨平台的计算机程序设计语言。是一种面向对象的动态类型语言,最初被设计用于
- 基础算法(一)#蓝桥杯
席万里
C/C++算法蓝桥杯c++
文章目录1、模拟1.1、DNA序列修正1.2、无尽的石头2、递归2.1、带备忘录的斐波那契数列2.2、数的计算3、进制转换3.1、进制转换模板3.2、Alice和Bob的爱恨情仇4、前缀和4.1、前缀和模板4.2、区间次方和4.3、小郑的蓝桥平衡串4.4、大石头的搬运工4.5、最大数组和4.6、四元组问题**5、差分5.1、区间更新(一维差分)5.2、肖恩的投球游戏加强版5.4、泡澡6、离散化6.
- 主席树求区间第K小模板
Stephen_Curry___
算法c++数据结构主席树
主席树(PresidentTree)是一种用于解决区间查询和修改问题的数据结构,通常用于静态区间问题(即查询和修改操作在构建结构之后不再发生变化)。主席树可以高效地处理诸如区间和、区间最值等问题。主席树的实现原理:基本思想:主席树是一种基于分治思想的数据结构,它将原始序列按照每个位置的取值范围进行离散化,然后构建出一棵持久化线段树(PersistentSegmentTree)。持久化线段树:持久化
- 【算法随笔:HDU 3333 Turing tree】(线段树 | 离线 | 离散化 | 贪心)
XNB's Not a Beginner
算法算法哈希算法leetcodec++排序算法
https://acm.hdu.edu.cn/showproblem.php?pid=3333https://acm.hdu.edu.cn/showproblem.php?pid=3333https://vjudge.net.cn/problem/HDU-3333https://vjudge.net.cn/problem/HDU-3333题目很简单,给出长度为N的数组,Q次询问,每次给出区间[x,
- 基础算法 - 快速排序、归并排序、二分查找、高精度模板、离散化数据
Calebbbbb
算法算法排序算法二分高精度模板离散化快速排序归并排序
文章目录前言Part1:排序一、快速排序二、归并排序Part2:二分一、二分-查找左边界二、二分-查找右边界Part3:高精度一、高精度加法二、高精度减法三、高精度乘法四、高精度除法Part4:离散化一、区间和前言由于本篇博客相较而言都是算法中最基础的模板,包括快速排序、归并排序、二分、高精度加减乘除法、离散化。这些基础模板多与其他算法混合考察,这些模板是许多算法的实现基础。Part1:排序快速排
- 离散化【学习笔记】
Simple World.
c++算法
引入小丁:小智,你不觉得我们小区旁边的树木太多太挤了吗?小智:确实。要不我们把一些树移走?小区对面的学校旁可正缺树呢!小丁:不过我们又不能自己把树移走,得找人帮忙。小智:嗯。要不我们就在树旁边标记一下,让园林工人移植一下吧。小丁和小智开始了自己的活儿……小丁从左往右,每数120棵便标记一棵树。小智从左往右,每数422棵便标记一棵树。小智:我们最好算算需要移走多少棵树,好让园林工人校对。小丁:我怎么
- C++ 离散化 算法 (详解)+ 例题
喝可乐的布偶猫
算法学习笔记算法c++数据结构
1、性质把无限空间中有限的个体映射到有限的空间中去,以此提高算法的空间效率。通俗的说,离散化是在不改变数据相对大小的条件下,对数据进行相应的压缩。适用范围:数的跨度很大,用的数很稀疏例如:值域:1~10^9,个数:10^5,值域很大,但是用到个数相对很少,这个时候就可以离散化比如:将a[i]:13100200050000//这里需要注意可以离散化的前提是数组元素必须是有序的 i:01 2 3
- 机器学习-特征提取-字典特征提取-文本特征提取-TF-IDF
涓涓自然卷
一、特征提取概要:1、定义:将任意数据(如文本或图像)转换为可用于机器学习的数字特征。注:特征值化是为了计算机更好的去理解数据。2、特征提取分类:字典特征提取(特征离散化)文本特征提取图像特征提取(深度学习介绍)3、特征提取API:sklearn.feature_extraction二、字典特征提取:作用:对字典数据进行特征值化。1、API:fromsklearn.feature_extracti
- 使用动态网格的流体动画 Fluid Animation with Dynamic Meshes 论文阅读笔记
hijackedbycsdn
FluidSimulation笔记
目录引言背景方法离散化离散化的导数算子速度插值广义的半拉格朗日步重新网格化双向流固耦合和质量守恒原文:Klingner,BryanM.,etal.“Fluidanimationwithdynamicmeshes.”ACMSIGGRAPH2006Papers.2006.820-825.引言使用[Alliezetal.,2005]的方法动态生成不规则的四面体网格根据边界的位置、边界的形状、基于流体和速
- 【压缩感知基础】Nyquist采样定理
superdont
计算机视觉计算机视觉opencv人工智能python矩阵
Nyquist定理,也被称作Nyquist采样定理,是由哈里·奈奎斯特在1928年提出的,它是信号处理领域的一个重要基础定理。它描述了连续信号被离散化为数字信号时,采样的要求以避免失真。数学表示Nyquist定理的核心内容可以描述如下:若要对一个带宽受限的连续信号进行采样而不引起失真,采样频率(频率的单位为Hz,指每秒采样数)必须大于信号最高频率的两倍。这个定理的数学表述为:[f_s>2f_{ma
- 牛客周赛 Round 28 F
Xing_ke309
算法数据结构
F.小红统计区间(hard)题目链接为前缀和枚举右端点看有多少个左端点满足条件,即在一个数轴上找的的个数。可以利用树状数组区间查询,查找中满足条件的前缀和。具体操作为先查找,再把自身在数轴上对应的数的个数加一。所以统计时没有统计自身对答案的影响。当前操作为第位时,则数轴上只记录了的前缀和。由于前缀和过大,形成的数轴过长,采用离散化。将所有前缀和由小到大排序并去重,构成新数轴。由于在数轴上可能没有直
- 代码源每日一题Div.1 (301~307)
xhyu61
做题笔记算法学习算法贪心算法动态规划acm竞赛深度优先
301-连续子序列题目链接简单的动态规划题目,先将所有数进行一个离散化,然后dp。dp[i]dp[i]dp[i]表示这个位置为结尾的最长符合要求的子序列的长度。对于每一个位置,找这个数对应的离散化编号的上一个数在什么位置,如果那个数目前为止还没有出现,或者那个数与这个数的差不是111,dp[i]=1dp[i]=1dp[i]=1;否则设上一个数最后一次出现在lstlstlst,那么dp[i]=dp[
- Python建模复习 :数据挖掘技术理论
啾啾二一
第二部分数据挖掘技术理论2.1数据分析方法论KDD知识发现KnowledgeDiscoveryfromDatabase:数据清理、数据集成、数据选择、数据变换(正规化、泛化、离散化)、数据挖掘、模式评估、知识表示。CRISP-DM(cross-industryprocessfordatamining):业务理解、数据理解、数据准备、建模、模型评估和模型发布。SEMMA:抽样Sample、探索Exp
- 【北邮鲁鹏老师计算机视觉课程笔记】05 Hough 霍夫变换
量子-Alex
CV知识学习和论文阅读计算机视觉笔记人工智能
【北邮鲁鹏老师计算机视觉课程笔记】05Hough霍夫变换1投票策略考虑到外点率太高①让直线上的每一点投票②希望噪声点不要给具体的任何模型投票,即噪声点不会有一致性的答案③即使被遮挡了,也能把直线找出来参数空间离散化直线相当于就是m,b两个参数点给参数空间投票找到投票最多的参数点给参数空间投票上图,图像空间的一条直线在参数空间是一个点上图:图像空间的一个点对应参数空间的一条直线因为在图像空间确定一个
- 基础算法(排序,二分,高精度加减乘除,前缀和与差分,离散化,位运算,双指针等)介绍
赵英英俊
算法总结算法c++数据结构
基础算法文章目录基础算法排序快速排序归并排序二分算法整数二分浮点数二分高精度加减乘除高精度加法高精度减法高精度乘法高精度除法前缀和与差分一维前缀和二维前缀和一维差分二维差分双指针算法位运算离散化区间合并代码模板排序快速排序时间复杂度为nlogn级别主要思想是每次选取一个基准(一般是以中间为基准),然后从数组的头尾开始进行比较,保证基准的左边都是小于基准的数,基准的右边都是大于基准的数,然后通过同样
- Acwing算法基础1——快排 归并 二分 前缀和 差分 双指针 位运算 离散化 区间和
倩mys
数据结构与算法算法数据结构java
文章目录1、快排----分治2、归并——分治3、二分法4、高精度(C++)5、前缀和(一维、二维)6、差分(一维、二维)7、双指针算法8、位运算9、离散化10、区间和流程:1.理解思想,背模板2.刷题目3.重复3~5遍2021.9.111、快排----分治主要思想:1.确定分界点:q[l]q[(l+r)/2]q[r]随机2.调整范围:x放右边3.递归:处理左右两端难点:划分快排不稳定,如何变得稳定
- 常用代码模板1——基础算法——排序 二分 高精度 前缀和与差分 双指针算法 位运算 离散化 区间合并
結城
c++
排序二分高精度前缀和与差分双指针算法位运算离散化区间合并快速排序算法模板——模板题AcWing785.快速排序voidquick_sort(intq[],intl,intr){if(l>=r)return;inti=l-1,j=r+1,x=q[l+r>>1];while(ix);if(i=r)return;intmid=l+r>>1;merge_sort(q,l,mid);merge_sort(q
- 一、基础算法之排序、二分、高精度、前缀和与差分、双指针算法、位运算、离散化、区间合并内容。
樱花的浪漫
C++与算法题系列算法数据结构
1.快速排序算法思想:选择基准元素,比基准元素小的放左边,比基准元素大的放右边。每趟至少一个元素排好。每一趟实现步骤:low>=high,返回,排序完成选取基准元素x=a[low],i=low,j=high当iusingnamespacestd;constintN=100010;intn;intq[N];voidquick_sort(inta[],intlow,inthigh){if(low>=h
- Java蓝桥杯备考---4.算法基础(二)
不要再睡
蓝桥杯算法职场和发展
1.离散化把无限空间中有限的个体映射到有限的空间中去,以此提高算法的时空效率。离散化是一种将数组的值域压缩,从而更加关注元素的大小关系的算法。当原数组中的数字很大、负数、小数时(大多数情况下是数字很大),难以将“元素值”表示为“数组下标”,一些依靠下标实现的算法和数据结构无法实现时,我们就可以考虑将其离散化。例如原数组的范围是[1,le9],而数组大小仅为le5,那么说明元素值的“种类数”最多也就
- leetcode 3027. 人员站位的方案数 II【离散化前缀和+枚举】
lianxuhanshu_
基础算法leetcode算法
原题链接:3027.人员站位的方案数II题目描述:给你一个nx2的二维数组points,它表示二维平面上的一些点坐标,其中points[i]=[xi,yi]。我们定义x轴的正方向为右(x轴递增的方向),x轴的负方向为左(x轴递减的方向)。类似的,我们定义y轴的正方向为上(y轴递增的方向),y轴的负方向为下(y轴递减的方向)。你需要安排这n个人的站位,这n个人中包括liupengsay和小羊肖恩。你
- Open CASCADE学习|点和曲线的相互转化
老歌老听老掉牙
OpenCASCADE学习OpenCASCADEc++
目录1、把曲线离散成点1.1按数量离散1.2按长度离散1.3按弦高离散2、由点合成曲线2.1B样条插值2.2B样条近似1、把曲线离散成点计算机图形学中绘制曲线,无论是绘制参数曲线还是非参数曲线,都需要先将参数曲线进行离散化,通过离散化得到一组离散化的点集,然后再将点集发送给图形渲染管线进行处理,最终生成我们想要的曲线。OpenCASCADE中提供了GCPnts包。利用GCPnts包中提供的类,我们
- 数据分析之数据预处理、分析建模、可视化
诗雅颂
数据分析ai爬虫数据采集分析建模可视化
数据分析通常需要经历三个主要步骤:数据预处理、分析建模和可视化1、数据预处理:数据预处理是指在进行数据分析之前对原始数据进行清洗、转换和整理的过程。其目的是确保数据的质量和可用性,以便后续的分析能够产生准确有效的结果。以下是一些常见的数据预处理方法:a.数据清洗:去除重复、缺失或错误的数据,修正数据的格式和结构等,以提高数据的准确性。b.数据转换:对数据进行归一化、标准化、离散化等处理,使得数据更
- 智慧海洋建设-Task3 特征工程
1598903c9dd7
关于本次智慧海洋特征构建分为时间类特征、分箱特征(x、y、v)、DataFrame特征(计数特征和偏移量特征)、统计特征(聚合)、embedding特征(word2vec、NMF)这几方面进行考虑的。分箱特征的重要性:一般在建立分类模型时,需要对连续变量离散化,特征离散化后,模型会更稳定,降低了模型过拟合的风险。离散特征的增加和减少都很容易,易于模型的快速迭代;稀疏向量内积乘法运算速度快,计算结果
- 扫描线(板子整理) 矩形面积并与矩形周长并
why_not_fly
算法c++数据结构
前置知识:离散化,线段树基础即可,难度不大,重在思维矩形面积并扫描线,矩形面积并(洛谷)https://www.luogu.com.cn/problem/P5490为了归并区间中的关系(每一段都是连起来的,所以要右端点偏移映射,后面在代码中体现)与常规维护懒标记不同,这里是向上维护的,最后返回一个tree.len[1],就是根节点的值,就是答案(图片来源于董晓老师的博客)即每一段区间右边那个位置(
- 第十一周学习报告
三冬四夏会不会有点漫长
算法竞赛#算法训练周报学习
知识点复习了一些基本算法,二分,前缀和,差分,双指针,离散化,位运算,归并排序,高精度等比赛情况无做题情况1.CFdiv2A(10题):A.WeGotEverythingCovered!,A.SatisfyingConstraints,A.LeastProduct,A.RatingIncrease,A.ConstructiveProblems,A.BinaryImbalance,A.Halloum
- 保序离散化 前缀和 去重 pair AcWing 802. 区间和
三冬四夏会不会有点漫长
#acwing算法基础算法竞赛算法c++数据结构
#includeusingnamespacestd;constintN=3e5+10;inta[N],s[N];typedefpairPII;vectoralls;vectoradd,query;intfind(intx){intl=0,r=alls.size();while(l>1;if(alls[mid]>=x)r=mid;elsel=mid+1;}returnr+1;}intmain(){i
- AcWing算法学习笔记:基础算法(快速排序 + 归并排序 + 二分 + 高精度 +前缀和差分 + 双指针算法 + 位运算 + 离散化 + 区间和并)
一只可爱的小猴子
算法学习笔记
基础算法一、快速排序①快速排序⭐②第k个数二、归并排序①归并排序②逆序对的数量⭐三、二分①数的范围⭐②数的三次方根⭐四、高精度①高精度加法②高精度减法③高精度乘法④高精度除法五、前缀和差分①前缀和②子矩阵的和③差分④差分矩阵六、双指针算法①最长连续不重复子序列②数组元素的目标和③判断子序列七、位运算(二进制数中1的个数)⭐八、离散化(区间和)⭐九、区间合并一、快速排序①快速排序⭐算法至于关键步骤第
- 机器学习数据预处理--连续变量分箱
恒c
机器学习人工智能
文章目录原理概念等宽分箱等频分箱聚类分箱有监督分箱原理概念连续变量分箱即对连续型字段进行离散化处理,也就是将连续型字段转化为离散型字段。连续字段的离散过程如下所示:连续变量的离散过程也可以理解为连续变量取值的重新编码过程,在很多时候,连续变量的离散化也被称为连续变量分箱。需要注意的是,离散之后字段的含义将发生变化,原始字段Income代表用户真实收入状况,而离散之后的含义就变成了用户收入的等级划分
- 数字图像处理中的拉普拉斯变换
小鱼tuning
算法图像处理
拉普拉斯变换是数字图像处理中的一种技术,其原理是基于拉普拉斯算子,用于检测图像中的边缘和突出细节。具体原理如下:1.拉普拉斯算子:拉普拉斯算子是一种数学算子,用于计算图像的二阶导数。在数字图像处理中,拉普拉斯算子用于离散化图像,并通过有限差分来近似计算二阶导数。2.离散拉普拉斯算子:在数字图像处理中,图像被离散成像素网格。拉普拉斯算子通过以下3x3的离散核(模板)来近似计算二阶导数:0101-41
- AutoEncoder自动编码器、VAE变分自编码器、VQVAE量子化(离散化)的自编码器
丁希希哇
AIGC阅读学习算法深度学习人工智能pytorch
文章目录AutoEncoder自动编码器(一)AutoEncoder的基本架构(二)AutoEncoder的概率理解(三)AutoEncoder的局限VAE变分自编码器(VariationalAutoEncoder)(一)VAE简介(二)VAE的概率理解(三)VAE与AE(三)VAE与GAN(四)VAE的损失函数VQVAE量子化(离散化)的自编码器(一)VQVAE简介(二)VQVAE与VAE(三)
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不