前面的课程中主要是使用ReceiverInputDStream,是针对Receiver方式开展的剖析。
企业级Spark Streaming应用程序开发中在越来越多的采用No Receivers的方式。NoReceiver方式有自己的优势,比如更大的控制的自由度、语义一致性等等。所以对NoReceivers方式和Receiver方式都需要进一步研究、思考。
其实NoReceivers方式更符合操作、处理数据的思路的。作为计算框架的Spark,底层会有数据来源,不使用Receiver,直接操作数据源,是更自然的方式。操作数据来源的封装器一定是RDD类型的。
Streaming中为了封装推出了KafkaRDD,只不过针对不同来源的数据,定制了相应的RDD。
KafkaRDD:
/**
* A batch-oriented interface for consuming from Kafka.
* Starting and ending offsets are specified in advance,
* so that you can control exactly-once semantics.
* @param kafkaParams Kafka http://kafka.apache.org/documentation.html#configuration">
* configuration parameters. Requires "metadata.broker.list" or "bootstrap.servers" to be set
* with Kafka broker(s) specified in host1:port1,host2:port2 form.
* @param offsetRanges offset ranges that define the Kafka data belonging to this RDD
* @param messageHandler function for translating each message into the desired type
*/
private[kafka]
class KafkaRDD[
K: ClassTag,
V: ClassTag,
U <: Decoder[_]: ClassTag,
T <: Decoder[_]: ClassTag,
R: ClassTag] private[spark] (
sc: SparkContext,
kafkaParams: Map[String, String],
val offsetRanges: Array[OffsetRange],
leaders: Map[TopicAndPartition, (String, Int)],
messageHandler: MessageAndMetadata[K, V] => R
) extends RDD[R](sc, Nil) with Logging with HasOffsetRanges {
...
注释中说明这是基于batch的kafka消费接口,特别强调了语义一致性。
OffsetRange:
/**
* Represents any object that has a collection of [[OffsetRange]]s. This can be used to access the
* offset ranges in RDDs generated by the direct Kafka DStream (see
* [[KafkaUtils.createDirectStream()]]).
* {{{
* KafkaUtils.createDirectStream(...).foreachRDD { rdd =>
* val offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
* ...
* }
* }}}
*/
trait HasOffsetRanges {
def offsetRanges: Array[OffsetRange]
}
/**
* Represents a range of offsets from a single Kafka TopicAndPartition. Instances of this class
* can be created with `OffsetRange.create()`.
* @param topic Kafka topic name
* @param partition Kafka partition id
* @param fromOffset Inclusive starting offset
* @param untilOffset Exclusive ending offset
*/
final class OffsetRange private(
val topic: String,
val partition: Int,
// 起始偏移量(包括)
val fromOffset: Long,
// 终止偏移量(不包括)
val untilOffset: Long) extends Serializable {
import OffsetRange.OffsetRangeTuple
...
注释中指出OffsetRange
代表了一个Kafka的Topic和Partition的偏移量范围。实例可以被OffsetRange.create()所创建。
这里说的偏移量的单位是消息数量。
OffsetRang伴生对象:
/**
* Companion object the provides methods to create instances of [[OffsetRange]].
*/
object OffsetRange {
def create(topic: String, partition: Int, fromOffset: Long, untilOffset: Long): OffsetRange =
new OffsetRange(topic, partition, fromOffset, untilOffset)
...
KafkaRDD.getPartitions:
override def getPartitions: Array[Partition] = {
offsetRanges.zipWithIndex.map { case (o, i) =>
val (host, port) = leaders(TopicAndPartition(o.topic, o.partition))
new KafkaRDDPartition(i, o.topic, o.partition, o.fromOffset, o.untilOffset, host, port)
}.toArray
}
KafkaRDDPartition:
/** @param topic kafka topic name
* @param partition kafka partition id
* @param fromOffset inclusive starting offset
* @param untilOffset exclusive ending offset
* @param host preferred kafka host, i.e. the leader at the time the rdd was created
* @param port preferred kafka host's port
*/
private[kafka]
class KafkaRDDPartition(
val index: Int,
val topic: String,
val partition: Int,
val fromOffset: Long,
val untilOffset: Long,
val host: String,
val port: Int
) extends Partition {
/** Number of messages this partition refers to */
def count(): Long = untilOffset - fromOffset
}
比较简单。方法只定义了消费数的统计。
KafkaRDD.compute:
override def compute(thePart: Partition, context: TaskContext): Iterator[R] = {
val part = thePart.asInstanceOf[KafkaRDDPartition]
assert(part.fromOffset <= part.untilOffset, errBeginAfterEnd(part))
if (part.fromOffset == part.untilOffset) {
log.info(s"Beginning offset ${part.fromOffset} is the same as ending offset " +
s"skipping ${part.topic} ${part.partition}")
Iterator.empty
} else {
new KafkaRDDIterator(part, context)
}
}
KafkaRDDIterator:
private class KafkaRDDIterator(
part: KafkaRDDPartition,
context: TaskContext) extends NextIterator[R] {
context.addTaskCompletionListener{ context => closeIfNeeded() }
log.info(s"Computing topic ${part.topic}, partition ${part.partition} " +
s"offsets ${part.fromOffset} -> ${part.untilOffset}")
val kc = newKafkaCluster(kafkaParams)
KafkaCluster:
class KafkaCluster(val kafkaParams: Map[String, String]) extends Serializable {
注意使用的Kafka的版本要求。
KafkaCluster.connect:
def connect(host: String, port: Int): SimpleConsumer =
new SimpleConsumer(host, port, config.socketTimeoutMs,
config.socketReceiveBufferBytes, config.clientId)
SimpleConsumer:
class SimpleConsumer(val host : scala.Predef.String, val port : scala.Int, val soTimeout : scala.Int, val bufferSize : scala.Int, val clientId : scala.Predef.String) extends scala.AnyRef with kafka.utils.Logging {
def close() : scala.Unit = { /* compiled code */ }
def send(request : kafka.api.TopicMetadataRequest) : kafka.api.TopicMetadataResponse = { /* compiled code */ }
def send(request : kafka.api.ConsumerMetadataRequest) : kafka.api.ConsumerMetadataResponse = { /* compiled code */ }
def fetch(request : kafka.api.FetchRequest) : kafka.api.FetchResponse = { /* compiled code */ }
def getOffsetsBefore(request : kafka.api.OffsetRequest) : kafka.api.OffsetResponse = { /* compiled code */ }
def commitOffsets(request : kafka.api.OffsetCommitRequest) : kafka.api.OffsetCommitResponse = { /* compiled code */ }
def fetchOffsets(request : kafka.api.OffsetFetchRequest) : kafka.api.OffsetFetchResponse = { /* compiled code */ }
def earliestOrLatestOffset(topicAndPartition : kafka.common.TopicAndPartition, earliestOrLatest : scala.Long, consumerId : scala.Int) : scala.Long = { /* compiled code */ }
}
KafkaUtils.createDirectStream:
def createDirectStream[
K: ClassTag,
V: ClassTag,
KD <: Decoder[K]: ClassTag,
VD <: Decoder[V]: ClassTag] (
ssc: StreamingContext,
kafkaParams: Map[String, String],
topics: Set[String]
): InputDStream[(K, V)] = {
val messageHandler = (mmd: MessageAndMetadata[K, V]) => (mmd.key, mmd.message)
val kc = new KafkaCluster(kafkaParams)
val fromOffsets =getFromOffsets(kc, kafkaParams, topics)
new DirectKafkaInputDStream[K, V, KD, VD, (K, V)](
ssc, kafkaParams, fromOffsets, messageHandler)
}
KafkaUtils.getFromOffsets:
private[kafka] def getFromOffsets(
kc: KafkaCluster,
kafkaParams: Map[String, String],
topics: Set[String]
): Map[TopicAndPartition, Long] = {
val reset = kafkaParams.get("auto.offset.reset").map(_.toLowerCase)
val result = for {
topicPartitions <- kc.getPartitions(topics).right
leaderOffsets <- (if (reset == Some("smallest")) {
kc.getEarliestLeaderOffsets(topicPartitions)
} else {
kc.getLatestLeaderOffsets(topicPartitions)
}).right
} yield {
leaderOffsets.map { case (tp, lo) =>
(tp, lo.offset)
}
}
KafkaCluster.checkErrors(result)
}
获得偏移量。
KafkaUtils重载了多个createDirectStream。
KafkaUtils.createDirectStream:
def createDirectStream[
K: ClassTag,
V: ClassTag,
KD <: Decoder[K]: ClassTag,
VD <: Decoder[V]: ClassTag,
R: ClassTag] (
ssc: StreamingContext,
kafkaParams: Map[String, String],
fromOffsets: Map[TopicAndPartition, Long],
messageHandler: MessageAndMetadata[K, V] => R
):InputDStream[R] = {
val cleanedHandler = ssc.sc.clean(messageHandler)
newDirectKafkaInputDStream[K, V, KD, VD, R](
ssc, kafkaParams, fromOffsets, cleanedHandler)
}
本身是一个InputDStream。实现时是生成DirectKafkaInputDStream对象。
classDirectKafkaInputDStream[
K: ClassTag,
V: ClassTag,
U <: Decoder[K]: ClassTag,
T <: Decoder[V]: ClassTag,
R: ClassTag](
ssc_ : StreamingContext,
val kafkaParams: Map[String, String],
val fromOffsets: Map[TopicAndPartition, Long],
messageHandler: MessageAndMetadata[K, V] => R
) extends InputDStream[R](ssc_) with Logging {
// kafka缺省最大重试次数为一次,为确保语义一致性。
val maxRetries = context.sparkContext.getConf.getInt(
"spark.streaming.kafka.maxRetries", 1)
...
每个Kafka的topic/partition对应一个RDD
partition。
DirectKafkaInputDStream.compute:
override defcompute(validTime: Time): Option[KafkaRDD[K, V, U, T, R]] = {
val untilOffsets = clamp(latestLeaderOffsets(maxRetries))
val rdd =KafkaRDD[K, V, U, T, R](
context.sparkContext, kafkaParams, currentOffsets, untilOffsets, messageHandler)
// Report the record number and metadata of this batch interval to InputInfoTracker.
val offsetRanges = currentOffsets.map { case (tp, fo) =>
val uo = untilOffsets(tp)
OffsetRange(tp.topic, tp.partition, fo, uo.offset)
}
val description = offsetRanges.filter { offsetRange =>
// Don't display empty ranges.
offsetRange.fromOffset != offsetRange.untilOffset
}.map { offsetRange =>
s"topic: ${offsetRange.topic}\tpartition: ${offsetRange.partition}\t" +
s"offsets: ${offsetRange.fromOffset} to ${offsetRange.untilOffset}"
}.mkString("\n")
// Copy offsetRanges to immutable.List to prevent from being modified by the user
val metadata = Map(
"offsets" -> offsetRanges.toList,
StreamInputInfo.METADATA_KEY_DESCRIPTION -> description)
val inputInfo = StreamInputInfo(id, rdd.count, metadata)
ssc.scheduler.inputInfoTracker.reportInfo(validTime, inputInfo)
currentOffsets = untilOffsets.map(kv => kv._1 -> kv._2.offset)
Some(rdd)
}
KafkaRDD的实例和DirectKafkaInputDStream,关系是一一对应的。每次compute就是产生一个KafkaRDD。KafkaRDD本身包含多个Partition,其实就是对应了多个Kafka的Partition。一个Partition只能属于一个Topic。
KafkaRDD.kafkaRDDIterator:
private class KafkaRDDIterator(
part: KafkaRDDPartition,
context: TaskContext) extends NextIterator[R] {
Direct方式的好处:
没缓存,就没内存溢出。
Receiver方式会和Worker的Executor绑定,不方便做分布式(当然已有技巧做到分布式了)。RDD的Direct方式可以容易地做到分布式。
Receiver方式在数据来不及及时处理而持续延时下去的话,Spark Streaming就有可能崩溃。Direct方式则不会出现这种情况,因为延迟了,就不会做后面的处理。
完全的语义一致性,确保数据一定会消费,而且不会重复消费。
Direct方式比Receiver方式性能高。
根据自己的InputDStream进行配置,可以设置很多DStream。
backpressure参数很先进。可以试探流进来的速度和当前的处理能力是否一致。如果不一致可以动态调整资源。
备注:
资料来源于:DT_大数据梦工厂(Spark发行版本定制)
更多私密内容,请关注微信公众号:DT_Spark
如果您对大数据Spark感兴趣,可以免费听由王家林老师每天晚上20:00开设的Spark永久免费公开课,地址YY房间号:68917580