数学基础

数学基础
代数
比如矩阵的SVD、QR分解,矩阵逆的求解,正定矩阵、稀疏矩阵等特殊矩阵的一些处理方法和性质等等。
大学的代数书一起学习 网上的各种公开课一起学习 国内的一些开放学习平台 国外的一些开放学习平台
网易公开课的链接:https://c.open.163.com/search/search.htm?query=线性代数#/search/all
概率论
经典的概率统计理论 贝叶斯概率统计,贝叶斯概率统计可能更重要一些 比如朴素贝叶斯模型、隐马尔卡模型、最大熵模型,这些我们在自然语言处理中耳熟能详的一些算法,都是贝叶斯模型的一种延伸和实例。
统计学导论http://open.163.com/movie/2011/5/M/O/M807PLQMF_M80HQQGMO.html,贝叶斯统计:https://www.springboard.com/blog/probability-bayes-theorem-data-science/
信息论
信息论作为一种衡量样本纯净度的有效方法。对于刻画两个元素之间的习惯搭配程度非常有效。这个对于我们预测一个语素可能的成分(词性标注),成分的可能组成(短语搭配)非常有价值
同时这部分知识也是很多机器学习算法的核心,比如决策树、随机森林等以信息熵作为决策桩的一些算法。对于这部分知识的学习,更多的是要理解各个熵的计算方法和优缺点,比如信息增益和信息增益率的区别,以及各自在业务场景中的优缺点。http://open.163.com/special/opencourse/information.html。
代数→概率论→随机过程

自然语言处理现状
随着知识图谱在搜索领域的大获成功,以及知识图谱的推广如火如荼地进行中,现在的自然语言处理有明显和知识图谱结合的趋势。特别是在特定领域的客服系统构建中,这种趋势就更明显,因为这些系统往往要关联很多领域的知识,而这种知识的整合和表示,很适合用知识图谱来解决。随着知识图谱基础工程技术的完善和进步,对于图谱构建的容易程度也大大提高,所以自然语言处理和知识图谱的结合就越来越成为趋势。

语义理解仍然是自然语言处理中一个难过的坎。目前各项自然语言处理技术基本已经比较成熟,但是很多技术的效果还达不到商用的水平。特别是在语义理解方面,和商用还有比较大的差距。比如聊天机器人现在还很难做到正常的聊天水平。不过随着各个研究机构和企业的不断努力,进步也是飞速的,比如微软小冰一直在不断的进步。

对于新的深度学习框架,目前在自然语言处理中的应用还有待进一步加深和提高。比如对抗学习、对偶学习等虽然在图像处理领域得到了比较好的效果,但是在自然语言处理领域的效果就稍微差一些,这里面的原因是多样的,因为没有深入研究,就不敢妄言。

目前人机对话、问答系统、语言翻译是自然语言处理中的热门领域,各大公司都有了自己的语音助手,这一块也都在投入大量的精力在做。当然这些上层的应用,也都依赖于底层技术和模型的进步,所以对于底层技术的研究应该说一直是热门,在未来一段时间应该也都还是热门。之前听一个教授讲过一个故事,他是做parser的,开始的时候很火,后来一段时间因为整个自然语言处理的效果差强人意,所以作为其中一个基础工作的parser就随之受到冷落,曾经有段时间相关的期刊会议会员锐减,但是最近整个行业的升温,这部分工作也随之而受到重视。不过因为他一直坚持在这个领域,所以建树颇丰,最近也成为热门领域和人物。

你可能感兴趣的:(数学基础)