- 机器学习 - 学习线性模型的重要性
谦亨有终
跟着AI向前走机器学习学习人工智能
在接下来的博文中,我们将重点学习线性模型的回归模型和分类模型,在学习之前,让我们来了解一下学习线性模型的重要性,以及如何入门学习。一、作为初学者如何学习线性模型?作为初学者,要高效学习机器学习以及其中的线性模型,可以遵循以下几个步骤和建议:(一)、机器学习的整体学习策略打好数学基础线性代数:理解向量、矩阵、线性变换等,这些是理解模型表示(如y=w^Tx+b)和算法优化的基础。微积分:掌握导数、梯度
- 算法学习笔记之数学基础
threesevens
算法与数据结构算法
例1(最小公倍数与最大公约数)计算最小公倍数公式:LCM(A,B)=A*B/GCD(A,B)A与B的最小公倍数等于A*B除以A与B的最大公约数计算最大公约数:辗转相除法原理:设A与B的最大公约数为x,则A是x的倍数,B也是x的倍数,令A=ax,B=bx,A/B取整为c,则A-cB=(a-bc)x。即A与B的余数也是x的倍数 intgcd(inta,intb) { inttemp; whil
- 学习AI大模型用这十种方法,轻松入门
大模型玩家
学习人工智能transformer深度学习langchainagi大模型
AI大模型学习在当前技术环境下,AI大模型学习不仅要求研究者具备深厚的数学基础和编程能力,还需要对特定领域的业务场景有深入的了解。通过不断优化模型结构和算法,AI大模型学习能够不断提升模型的准确性和效率,为人类生活和工作带来更多便利。系统化理论知识建构:对于AI大模型的学习,首要任务是对基础理论进行全面而深入的理解。这意味着需要投入大量的时间去研读经典的机器学习和深度学习教材,包括但不限于《统计学
- 人工智能之数学基础:线性空间
每天五分钟玩转人工智能
机器学习深度学习之数学基础人工智能深度学习线性代数线性空间神经网络
本文重点本文我们将讲解线性空间的知识,它不仅是数学中非常重要的知识点,它在机器学习和深度学习中的价值也是非常重要的,在机器学习和深度学习中是可以通过线性空间来进行解释的。线性空间的直观理解线性空间可以看作是一个多维的“宇宙”,其中的“点”由向量表示,而“运动”则通过向量的加法和数乘来实现。这个宇宙中的每一个向量都可以看作是从原点出发到该点的一条有向线段,而线性空间的维度则决定了这个宇宙的大小和复杂
- 用大模型学大模型02-数学基础 微积分
wyg_031113
人工智能
https://metaso.cn/s/uxPBB9C我正在学习深度学习相关的数学知识,学到了微积分核心概念:导数(尤其是偏导数)、梯度、链式法则;积分与最优化(如梯度下降法的数学推导)给我一个入门级的完整教程和实例好吧,我现在需要帮用户整理一个关于深度学习中微积分核心概念的入门教程和实例。用户提到了导数、偏导数、梯度、链式法则,还有积分和优化比如梯度下降法。我得先理清楚这些概念之间的联系,然后结
- 用大模型学大模型03-数学基础 概率论
wyg_031113
概率论人工智能
https://metaso.cn/s/Jp0OU9w提示词:我正在学习深度学习相关的数学知识,学到了概率论与统计学部分,给我一个入门级的完整教程和实例。好的,我现在需要回答用户关于深度学习所需的概率论与统计学入门教程和实例的问题。用户希望得到一个完整的教程和实例,所以我要从我搜索到的资料中整理出相关的知识点和学习路径,并结合实例说明。首先,查看证据中的相关内容。提到花书学习笔记,涵盖了概率论、信
- 机器学习数学基础:21.特征值与特征向量
@心都
机器学习概率论人工智能
一、引言在现代科学与工程的众多领域中,线性代数扮演着举足轻重的角色。其中,特征值、特征向量以及相似对角化的概念和方法,不仅是线性代数理论体系的核心部分,更是解决实际问题的有力工具。无论是在物理学中描述系统的振动模式,还是在计算机科学里进行数据降维与图像处理,它们都发挥着关键作用。本教程将深入且全面地对这些内容展开讲解,旨在帮助读者透彻理解并熟练运用相关知识。二、基础知识准备(一)对角矩阵的高次幂计
- 分布式训练三大并行策略:数据、模型与流水线并行的本质解析
WHCIS
#分布式训练人工智能与机器学习分布式人工智能深度学习
截至2023年,大型语言模型的参数量已突破万亿级别(如GooglePaLM2达到3400亿参数),单卡显存容量(NVIDIAA10080GB)与计算能力(312TFLOPS)面临严峻挑战。分布式训练通过多维度并行策略实现:算力维度:聚合多卡计算能力存储维度:分布式参数存储通信维度:优化数据传输路径本文将深入剖析三大并行策略的数学本质。一、数据并行:分布式优化的数学基础1.1同步SGD的收敛性证明定
- 书籍-《信息科学的数学基础》
机器学习人工智能数学
书籍:MathematicalFoundationsofInformationSciences作者:EsfandiarHaghverdi,LiugenZhu出版:WorldScientificPublishingCompany编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《信息科学的数学基础》01书籍介绍这是一本简明扼要的书籍,旨在引导学生进入逻辑思维的基本原理和重要的数学结构的世界。这些知
- 书籍-《机器学习数学基础》
机器学习深度学习数学
书籍:MathematicsforMachineLearning作者:MarcPeterDeisenroth,A.AldoFaisal,ChengSoonOng出版:CambridgeUniversityPress编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《机器学习数学基础》01书籍介绍理解机器学习所需的基本数学工具包括线性代数、解析几何、矩阵分解、向量微积分、最优化、概率论和统计学。这
- 书籍-《强化学习数学基础》
强化学习数学人工智能
书籍:MathematicalFoundationsofReinforcementLearning作者:赵世钰出版:Springer编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《强化学习数学基础》01书籍介绍本书对基本概念、核心挑战和经典强化学习算法进行了数学但易于理解的介绍。它旨在帮助读者理解算法的理论基础,提供对其设计和功能的见解。整个过程中包括许多说明性示例。数学内容经过精心设计,以
- 初学者怎么入门大语言模型(LLM)
大模型
大语言模型(LLM)作为人工智能(AI)领域的核心技术之一,近年来受到了广泛的关注。对于初学者来说,入门LLM并非难事,但需要从理论学习、数学基础到实践操作逐步深入。掌握基础数学与编程技能,理解自然语言处理的相关概念,以及熟悉LLM的架构和应用,将为学习者铺平入门的道路。下面我们就来详细探讨如何从零开始入门大语言模型。一、了解大语言模型(LLM)的基本概念大语言模型(LLM)是通过海量文本数据进行
- AGI方向研究
微醺欧耶
agi
要成为一名合格的AGI(通用人工智能)实习生,你需要具备跨学科的知识体系、扎实的技术能力以及前沿研究视野。以下是基于你当前基础的能力扩展方向、关键研究领域以及未来发展的详细分析:---###**一、AGI实习生需具备的核心能力**####1.**数学与理论基础**-**数学基础**:线性代数(矩阵运算、特征值)、概率统计(贝叶斯理论、分布模型)、微积分(梯度优化)、信息论(熵、KL散度)。-**计
- OSG学习笔记 - 数学基础(1)
听风者868
OSGc++图形学其他学习opengl
1、OSG数学基础OSG采用的世界坐标系是左手坐标系,这一点与OpenGL保持一样的,但坐标轴的方向不一样。·OSG的X轴向右,Y轴朝里,Z轴向上。·OpenGL的X轴向右,Y轴向上,Z轴朝外。1.1世界坐标系-物体坐标系转换世界坐标系-物理坐标系描述的问题主要是关于物体本身的。osg::PositionAttitudeTransform//位置变换类osg::MatrixTransform//矩
- AI学习专题(一)LLM技术路线
王钧石的技术博客
大模型人工智能学习ai
阶段1:AI及大模型基础(1-2个月)数学基础线性代数(矩阵、特征值分解、SVD)概率论与统计(贝叶斯定理、极大似然估计)最优化方法(梯度下降、拉格朗日乘子法)编程&框架Python(NumPy、Pandas、Matplotlib)PyTorch&TensorFlow基础HuggingFaceTransformers入门深度学习基础机器学习基础(监督/无监督学习、正则化、过拟合)反向传播、优化器(
- 深度学习-数学基础-01
神经网络深度学习
下面的内容是豆包总结的。学习神经网络需要以下数学基础:线性代数向量与矩阵神经网络中的数据通常以向量(如输入特征向量)和矩阵(如权重矩阵)的形式表示。理解向量的点积、加法、减法等运算,以及矩阵的乘法、转置等操作至关重要。例如,在一个简单的全连接神经网络中,输入层到隐藏层的计算就是通过输入向量与权重矩阵相乘来实现的。矩阵的秩、特征值和特征向量的概念在神经网络的一些高级主题如主成分分析(PCA)降维和深
- 机器学习数学基础:20.方程组解的结构
@心都
机器学习数学基础机器学习人工智能
一、教程简介本教程专门为线性代数零基础的小白打造,旨在全面且细致地讲解解方程组与基础解系的相关知识,助力大家逐步扎实地掌握这一重要内容板块。二、知识目标透彻理解非齐次与齐次线性方程组的定义、本质区别以及对应的解法。熟练掌握判断方程组解的存在性的方法,精准把握秩在其中起到的决定性作用。能够独立且准确地求解齐次线性方程组,并规范地表示出其通解。精通判断一个向量组是否为齐次线性方程组的基础解系的方法,并
- 机器学习数学基础:18.向量组及其线性组合
@心都
机器学习数学基础机器学习概率论线性代数
向量组与线性表示:案例与教程详解一、基础概念(一)向量组向量组是若干同位数列向量组成的集合。比如在平面直角坐标系中,向量组{α⃗1=[10],α⃗2=[01]}\{\vec{\alpha}_1\=\begin{bmatrix}1\\0\end{bmatrix},\vec{\alpha}_2\=\begin{bmatrix}0\\1\end{bmatrix}\}{α1=[10],α2=[01]},这
- 机器学习数学基础:8.泰勒公式
@心都
机器学习数学基础机器学习人工智能
一、泰勒公式的由来:为啥我们需要它?同学们,想象一下,你拿到了一块超级复杂、弯弯曲曲,就像一团乱麻似的拼图(假设这拼图代表一个复杂函数,比如一条有各种起伏的波浪线),而你手头只有一些简单的积木块(这里的积木块就是多项式啦),现在要你用这些简单积木拼出拼图的模样,是不是感觉无从下手?这时候,泰勒公式就像一位智慧的导师闪亮登场,它会告诉你:“别慌,孩子,我来教你怎么挑选积木块,怎么决定它们的形状和大小
- 机器学习数学基础:3.偏导数
@心都
机器学习数学基础机器学习人工智能
偏导数教程一、偏导数的引入在我们研究一元函数y=f(x)y=f(x)y=f(x)时,导数y′=f′(x)y^\prime=f^\prime(x)y′=f′(x)表示函数yyy关于xxx的变化率。然而,当我们遇到多元函数,例如二元函数z=f(x,y)z=f(x,y)z=f(x,y)时,情况变得更加复杂。我们可能会想知道函数zzz在xxx方向或yyy方向上的变化率,这就引入了偏导数的概念。二、偏导数的
- 机器学习数学基础:2.连续性与导数
@心都
机器学习数学基础机器学习概率论人工智能
函数连续性、瞬时速度、导数相关知识一、函数连续性(一)函数在某点连续的条件有定义:函数在点x0x_0x0处要有明确、确定的值f(x0)f(x_0)f(x0)。例如,f(x)=1xf(x)=\frac{1}{x}f(x)=x1在x=0x=0x=0处无定义,不满足此条件,所以在x=0x=0x=0处不连续。极限存在:当xxx从x0x_0x0左侧(x→x0−x\tox_0^{-}x→x0−)和右侧(x→x
- 机器学习数学基础:19.线性相关与线性无关
@心都
机器学习数学基础机器学习概率论线性代数
一、线性相关与线性无关的定义(一)线性相关想象我们有一组向量,就好比是一群有着不同“力量”和“方向”的小伙伴。给定的向量组α⃗1,α⃗2,⋯ ,α⃗m\vec{\alpha}_1,\vec{\alpha}_2,\cdots,\vec{\alpha}_mα1,α2,⋯,αm,如果能找到不全为零的数k1,k2,⋯ ,kmk_1,k_2,\cdots,k_mk1,k2,⋯,km,让k1α⃗1+k2α⃗2
- 机器学习数学基础:14.矩阵的公式
@心都
机器学习数学基础机器学习矩阵人工智能
1.操作顺序可交换对于矩阵AAA,若存在两种运算???和???,使得(A?)?=(A?)?(A^{?})^{?}\=(A^{?})^{?}(A?)?=(A?)?,这意味着这两种运算的顺序可以交换。由此我们得到以下三个重要等式:(A∗)−1=(A−1)∗(A^{*})^{-1}\=(A^{-1})^{*}(A∗)−1=(A−1)∗:已知伴随矩阵与逆矩阵的关系A∗=∣A∣A−1A^{*}\=|A|A^
- 【AI原理解析】— Gemini模型
coolkidlan
AI学习路径AIGC人工智能AIGC
目录1.模型概述定义特点2.模型基础与架构模型架构模型尺寸3.多模态处理能力输入处理数据处理训练过程4.技术细节与优化预训练上下文长度注意机制5.安全性与编程能力安全性评估编程能力6.模型发布与应用发布时间应用方向7.性能评估8.数学基础8.1Transformer解码器基础8.1.1自注意力机制(Self-Attention)8.1.2前馈神经网络(Feed-ForwardNeuralNetwo
- 机器学习数学基础:11.行列式的多种计算方法
@心都
机器学习数学基础机器学习线性代数人工智能
行列式的多种计算方法行(列)相等型对于行列式∣1+a11122+a22333+a34444+a∣\begin{vmatrix}1+a&1&1&1\\2&2+a&2&2\\3&3&3+a&3\\4&4&4&4+a\end{vmatrix}1+a23412+a34123+a41234+a,通过将第一行元素都变为10+a10+a10+a,得到∣10+a10+a10+a10+a22+a22333+a344
- 自动驾驶领域成长方案
树上求索
自动驾驶人工智能机器学习
一、学习目标成为自动驾驶领域专家,全面掌握自动驾驶技术体系,能独立进行自动驾驶系统设计、开发与优化,解决实际工程问题。二、成长阶段(一)基础理论奠基期(1-2年)专业知识学习:学习数学(高等数学、线性代数、概率论与数理统计、数值分析等),为理解算法和模型提供数学基础;深入研究自动驾驶涉及的专业课程,如控制理论、传感器原理(激光雷达、摄像头、毫米波雷达等)、机器学习(监督学习、无监督学习、深度学习)
- 深度学习篇---深度学习相关知识点&关键名词含义
Ronin-Lotus
深度学习篇深度学习人工智能机器学习pytorchpaddlepaddlepython
文章目录前言第一部分:相关知识点一、基础铺垫层(必须掌握的核心基础)1.数学基础•线性代数•微积分•概率与统计2.编程基础3.机器学习基础二、深度学习核心层(神经网络与训练机制)1.神经网络基础2.激活函数(ActivationFunction)3.损失函数(LossFunction)4.优化算法(Optimization)5.反向传播(Backpropagation)6.正则化与调优三、进阶模型
- 为什么关系模型不叫表模型
昊昊该干饭了
mysqlIT知识数据库oraclemysql
在数据库设计中,关系模型(RelationalModel)是最广泛应用的模型之一。然而,许多初学者容易将其简单地理解为"表模型",因为在实际应用中,数据通常以表的形式存储和展示。那么,为什么关系模型不被直接称为"表模型"呢?本篇文章将从数学基础、逻辑与物理实现、数据库完整性、数据独立性及查询操作等多个角度,深入剖析关系模型的本质,并解释它为何不同于一个简单的表结构。目录1.关系模型的数学基础1.1
- 区块链的数学基础:核心原理与应用解析
silver687
区块链
区块链技术的核心原理和应用离不开其强大的数学基础,以下是对其数学基础、核心原理与应用的详细解析:区块链的数学基础区块链的数学基础主要包括以下几个核心领域:1.密码学:密码学是区块链安全性的基石,主要保障数据的机密性、完整性和不可抵赖性。其中,对称加密算法(如AES)加密和解密使用相同密钥,计算效率高,但不适用于区块链的公开网络环境;非对称加密使用一对密钥(公钥和私钥),用户通过私钥签名交易,其他人
- 《机器学习数学基础》补充资料:第343页结论证明
CS创新实验室
数学基础机器学习人工智能概率论
证明E(XT)=E(X)TE(\pmb{X}^{\text{T}})=E(\pmb{X})^{\text{T}}E(XT)=E(X)T《机器学习数学基础》第343页,有这样一句话:对于多维随机变量X\pmb{X}X,根据数学期望的定义,有:E(XT)=E(X)TE(\pmb{X}^{\text{T}})=E(\pmb{X})^{\text{T}}E(XT)=E(X)T。有读者反应,希望能给出有关证
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><