JAVA8学习——Stream底层的实现(学习过程)

Stream底层的实现

Stream接口实现了 BaseStream 接口,我们先来看看BaseStream的定义

BaseStream

BaseStream是所有流的父类接口。

对JavaDoc做一次解读,了解提供的所有方法。

/**
 * Base interface for streams, which are sequences of elements supporting
 * sequential and parallel aggregate operations.  The following example
 * illustrates an aggregate operation using the stream types {@link Stream}
 * and {@link IntStream}, computing the sum of the weights of the red widgets:
 *
 * 
{@code
 *     int sum = widgets.stream()
 *                      .filter(w -> w.getColor() == RED)
 *                      .mapToInt(w -> w.getWeight())
 *                      .sum();
 * }
* * See the class documentation for {@link Stream} and the package documentation * for java.util.stream for additional * specification of streams, stream operations, stream pipelines, and * parallelism, which governs the behavior of all stream types. * * @param the type of the stream elements * @param the type of of the stream implementing {@code BaseStream} S 代表中间操作产生的新的流操作。 * @since 1.8 * @see Stream * @see IntStream * @see LongStream * @see DoubleStream * @see java.util.stream */ public interface BaseStream> extends AutoCloseable { /** * Returns an iterator for the elements of this stream. * *

This is a terminal * operation. * * @return the element iterator for this stream */ Iterator iterator(); //迭代器 ,针对于流中元素类型*(T)的迭代器 /** * Returns a spliterator for the elements of this stream. * *

This is a terminal * operation. * * @return the element spliterator for this stream */ Spliterator spliterator(); //分割迭代器, 流中的核心的操作。 /** * Returns whether this stream, if a terminal operation were to be executed, * would execute in parallel. Calling this method after invoking an * terminal stream operation method may yield unpredictable results. * * @return {@code true} if this stream would execute in parallel if executed */ boolean isParallel(); //是否并行 /** * Returns an equivalent stream that is sequential. May return * itself, either because the stream was already sequential, or because * the underlying stream state was modified to be sequential.,. 返回一个等价的串行流,有可能返回流本身,或者是流修改成串行流的 * *

This is an intermediate * operation. * * @return a sequential stream */ S sequential(); //返回值为S:流,新的流对象 /** * Returns an equivalent stream that is parallel. May return * itself, either because the stream was already parallel, or because * the underlying stream state was modified to be parallel. * *

This is an intermediate * operation. * * @return a parallel stream */ S parallel(); /** * Returns an equivalent stream that is * unordered. May return * itself, either because the stream was already unordered, or because * the underlying stream state was modified to be unordered. * *

This is an intermediate * operation. * * @return an unordered stream */ S unordered(); /** * Returns an equivalent stream with an additional close handler. Close * handlers are run when the {@link #close()} method * is called on the stream, and are executed in the order they were * added. All close handlers are run, even if earlier close handlers throw * exceptions. If any close handler throws an exception, the first * exception thrown will be relayed to the caller of {@code close()}, with * any remaining exceptions added to that exception as suppressed exceptions * (unless one of the remaining exceptions is the same exception as the * first exception, since an exception cannot suppress itself.) May * return itself. 返回值为流。流中带了一个关闭处理器、关闭处理器调用的是 close()方法。 按照被添加的顺序去关闭。 * *

This is an intermediate * operation. * * @param closeHandler A task to execute when the stream is closed * @return a stream with a handler that is run if the stream is closed */ S onClose(Runnable closeHandler); /** * Closes this stream, causing all close handlers for this stream pipeline * to be called. * * @see AutoCloseable#close() */ @Override void close(); }

对onClose关闭处理器做单独的认识

public class StreamTest2 {
    public static void main(String[] args) {
        List list = Arrays.asList("hello", "world", "hello world");
//        list.stream().onClose(()-> System.out.println("aaa")).onClose(()-> System.out.println("bbb")).forEach(System.out::println);

        try (Stream stream = list.stream()){
            stream.onClose(()-> {
                System.out.println("aaa");
                throw new NullPointerException("first Exception");
            }).onClose(()->{
                System.out.println("bbb");
                throw new ArithmeticException("first Exception");
            }).forEach(System.out::println);
        }
    }
}
Exception in thread "main" java.lang.NullPointerException: first Exception
    at com.dawa.jdk8.StreamTest2.lambda$main$0(StreamTest2.java:21)
    at java.util.stream.Streams$1.run(Streams.java:850)
    at java.util.stream.AbstractPipeline.close(AbstractPipeline.java:323)
    at com.dawa.jdk8.StreamTest2.main(StreamTest2.java:26)
    Suppressed: java.lang.ArithmeticException: first Exception
        at com.dawa.jdk8.StreamTest2.lambda$main$1(StreamTest2.java:24)
        at java.util.stream.Streams$1.run(Streams.java:854)
        ... 2 more

几种可能的情况

  1. //运行结果就可以看到 aa,bbb被调用。
  2. //也可以看到压制异常
  3. //如果两个地方的异常是相同的异常对象,则第二个异常不会被压制。因为异常是自己不会压制自己的。
  4. //如果是同一种异常,但是不是同一个异常,还是会压制的。

备注:遇到问题,javadoc里面已经写的很清楚了。往往每个人都伸手可得的内容,容易最被忽视掉。

Stream源码分析

引入Example,跟源码。

public static void main(String[] args) {
        List list = Arrays.asList("hello", "world", "hello world");
        list.stream().forEach(System.out::println);
    }

1. stream()

来自Collection接口中的默认方法。

     /**
     * Returns a sequential {@code Stream} with this collection as its source.
     *
     * 

This method should be overridden when the {@link #spliterator()} * method cannot return a spliterator that is {@code IMMUTABLE}, * {@code CONCURRENT}, or late-binding. (See {@link #spliterator()} * for details.) 当这个 spliterator()无法返回这三个(不可变的,并行的,延迟绑定的)类型中的一个的话, 这个方法需要被重写。 * * @implSpec * The default implementation creates a sequential {@code Stream} from the * collection's {@code Spliterator}. 返回一个针对于当前元素的一个串行流。 * * @return a sequential {@code Stream} over the elements in this collection * @since 1.8 */ default Stream stream() { return StreamSupport.stream(spliterator(), false); }

所以,这里就要先了解一下spliterator()这个方法是怎么实现的。

spliterator()的源码实现

实现方法和stream()一样,在Collection接口中的默认方法

/**
     * Creates a {@link Spliterator} over the elements in this collection.
     *
     * Implementations should document characteristic values reported by the
     * spliterator.  Such characteristic values are not required to be reported
     * if the spliterator reports {@link Spliterator#SIZED} and this collection
     * contains no elements.
     Spliterator#SIZED,集合,固定大小,并且没有值。的时候是不用报告的。
     
     --备注:和collectors的characteristic特性值
     
     *
     * 

The default implementation should be overridden by subclasses that * can return a more efficient spliterator. In order to * preserve expected laziness behavior for the {@link #stream()} and * {@link #parallelStream()}} methods, spliterators should either have the * characteristic of {@code IMMUTABLE} or {@code CONCURRENT}, or be * late-binding. * If none of these is practical, the overriding class should describe the * spliterator's documented policy of binding and structural interference, * and should override the {@link #stream()} and {@link #parallelStream()} * methods to create streams using a {@code Supplier} of the spliterator, * as in: 默认的实现,应该被子类所重写。为了保留期望的stream()的延迟行为。分割迭代器的特性值 只有在满足{@code IMMUTABLE} or {@code CONCURRENT}的时候,才是具有延迟行为的。 如果上面条件都无法做的话,重写的类应该去描述这个分割迭代器的文档 并且重写。 用下面的这种方式去定义。 *

{@code
     *     Stream s = StreamSupport.stream(() -> spliterator(), spliteratorCharacteristics)
     * }
*

These requirements ensure that streams produced by the * {@link #stream()} and {@link #parallelStream()} methods will reflect the * contents of the collection as of initiation of the terminal stream * operation. 这些要求确保了由这两个方法生成的流,反应了流的内容 (在终止流操作执行的一瞬间) * * @implSpec * The default implementation creates a * late-binding spliterator * from the collections's {@code Iterator}. The spliterator inherits the * fail-fast properties of the collection's iterator. 默认的实现 从集合的迭代器中,创建一个延迟绑定的分割迭代器。 分割迭代器会继承迭代器的快速失败的属性。 *

* The created {@code Spliterator} reports {@link Spliterator#SIZED}. 创建的分割迭代器,会携带一个 Spliterator#SIZED (固定大小的)的特性值 * * @implNote * The created {@code Spliterator} additionally reports * {@link Spliterator#SUBSIZED}. 还会额外的增加一个Spliterator#SUBSIZED(子大小)的确定。 * *

If a spliterator covers no elements then the reporting of additional * characteristic values, beyond that of {@code SIZED} and {@code SUBSIZED}, * does not aid clients to control, specialize or simplify computation. * However, this does enable shared use of an immutable and empty * spliterator instance (see {@link Spliterators#emptySpliterator()}) for * empty collections, and enables clients to determine if such a spliterator * covers no elements. 如果分割迭代器里面没有元素,那么除了 {@code SIZED} and {@code SUBSIZED}之外其他的特性,对于计算的控制是没有帮助作用的。 不过可以促进空的迭代器的共享使用。 参见: Spliterators#emptySpliterator()、 对于一个空的迭代器可以判断是不是没有元素 * * @return a {@code Spliterator} over the elements in this collection * @since 1.8 */ @Override default Spliterator spliterator() { return Spliterators.spliterator(this, 0); }

那么,到底什么是分割迭代器? Spliterator

到底什么是分割迭代器 —— Spliterator类

和Collector收集器一样,同时提供了collector接口和 Collectors的工具类

public final class Spliterators {}
public interface Spliterator {}

我们先来看看Spliterator接口的javadoc


/**
 * An object for traversing and partitioning elements of a source.  The source
 * of elements covered by a Spliterator could be, for example, an array, a
 * {@link Collection}, an IO channel, or a generator function.
 一个分割迭代器,是一个对象,用于对源中的元素进行遍历和分区。
 源可以是:数组,集合,或者IO通道
 *
 * 

A Spliterator may traverse elements individually ({@link * #tryAdvance tryAdvance()}) or sequentially in bulk * ({@link #forEachRemaining forEachRemaining()}). 一个迭代器可以一个一个的去遍历。tryAdvance() 也可以以块的方式去遍历。 forEachRemaining() * *

A Spliterator may also partition off some of its elements (using * {@link #trySplit}) as another Spliterator, to be used in * possibly-parallel operations. Operations using a Spliterator that * cannot split, or does so in a highly imbalanced or inefficient * manner, are unlikely to benefit from parallelism. Traversal * and splitting exhaust elements; each Spliterator is useful for only a single * bulk computation. 也可以使用 trySplit() 对元素进行分区,形成一个新的元素迭代器。也可以以并行的方式去操作。 使用Spliterator的操作,是不能分割,或者效率非常低的分割, 如果用并行的话,不会获得很大的收益。 (比如,100个元素,分区分为 2+98,这种的就是非常低效的。就无法利用并行的优势了。) 每一个分割迭代器,只对自己特定的块有用。 * *

A Spliterator also reports a set of {@link #characteristics()} of its * structure, source, and elements from among {@link #ORDERED}, * {@link #DISTINCT}, {@link #SORTED}, {@link #SIZED}, {@link #NONNULL}, * {@link #IMMUTABLE}, {@link #CONCURRENT}, and {@link #SUBSIZED}. These may * be employed by Spliterator clients to control, specialize or simplify * computation. For example, a Spliterator for a {@link Collection} would * report {@code SIZED}, a Spliterator for a {@link Set} would report * {@code DISTINCT}, and a Spliterator for a {@link SortedSet} would also * report {@code SORTED}. Characteristics are reported as a simple unioned bit * set. 分割迭代器还会 设置 特性值 {@link #ORDERED}, {@link #DISTINCT}, {@link #SORTED}, {@link #SIZED}, {@link #NONNULL}, {@link #IMMUTABLE}, {@link #CONCURRENT}, {@link #SUBSIZED}. 这些属性用来控制特定的某些计算。 比如说,一个 Collection就需要SIZED特性值 Set需要DISTINCT * * Some characteristics additionally constrain method behavior; for example if * {@code ORDERED}, traversal methods must conform to their documented ordering. * New characteristics may be defined in the future, so implementors should not * assign meanings to unlisted values. 不要给没有列出来的值赋予新的含义。 * *

A Spliterator that does not report {@code IMMUTABLE} or * {@code CONCURRENT} is expected to have a documented policy concerning: * when the spliterator binds to the element source; and detection of * structural interference of the element source detected after binding. A * late-binding Spliterator binds to the source of elements at the * point of first traversal, first split, or first query for estimated size, * rather than at the time the Spliterator is created. A Spliterator that is * not late-binding binds to the source of elements at the point of * construction or first invocation of any method. Modifications made to the * source prior to binding are reflected when the Spliterator is traversed. * After binding a Spliterator should, on a best-effort basis, throw * {@link ConcurrentModificationException} if structural interference is * detected. Spliterators that do this are called fail-fast. The * bulk traversal method ({@link #forEachRemaining forEachRemaining()}) of a * Spliterator may optimize traversal and check for structural interference * after all elements have been traversed, rather than checking per-element and * failing immediately. 并不是说一个迭代器在创建的时候就被绑定到源上面了。而是在满足首次遍历,首次分割,首次查询的时候,才进行绑定。 ConcurrentModificationException,在绑定之前操作,会出现这一行的异常。 叫做 快速失败。 * *

Spliterators can provide an estimate of the number of remaining elements * via the {@link #estimateSize} method. Ideally, as reflected in characteristic * {@link #SIZED}, this value corresponds exactly to the number of elements * that would be encountered in a successful traversal. However, even when not * exactly known, an estimated value value may still be useful to operations * being performed on the source, such as helping to determine whether it is * preferable to split further or traverse the remaining elements sequentially. * *

Despite their obvious utility in parallel algorithms, spliterators are not * expected to be thread-safe; instead, implementations of parallel algorithms * using spliterators should ensure that the spliterator is only used by one * thread at a time. This is generally easy to attain via serial * thread-confinement, which often is a natural consequence of typical * parallel algorithms that work by recursive decomposition. A thread calling * {@link #trySplit()} may hand over the returned Spliterator to another thread, * which in turn may traverse or further split that Spliterator. The behaviour * of splitting and traversal is undefined if two or more threads operate * concurrently on the same spliterator. If the original thread hands a * spliterator off to another thread for processing, it is best if that handoff * occurs before any elements are consumed with {@link #tryAdvance(Consumer) * tryAdvance()}, as certain guarantees (such as the accuracy of * {@link #estimateSize()} for {@code SIZED} spliterators) are only valid before * traversal has begun. * serial-thread-confinement : 线程安全围栏 *

Primitive subtype specializations of {@code Spliterator} are provided for * {@link OfInt int}, {@link OfLong long}, and {@link OfDouble double} values. * The subtype default implementations of * {@link Spliterator#tryAdvance(java.util.function.Consumer)} * and {@link Spliterator#forEachRemaining(java.util.function.Consumer)} box * primitive values to instances of their corresponding wrapper class. Such * boxing may undermine any performance advantages gained by using the primitive * specializations. To avoid boxing, the corresponding primitive-based methods * should be used. tryAdvance()方法和forEachRemaining() 提供了原生子类型的特化, int, long, doule 等,子类型默认的实现。 避免包装类型装箱拆箱操作。 如下。 For example, 如下特化版本. * {@link Spliterator.OfInt#tryAdvance(java.util.function.IntConsumer)} * and {@link Spliterator.OfInt#forEachRemaining(java.util.function.IntConsumer)} * should be used in preference to * {@link Spliterator.OfInt#tryAdvance(java.util.function.Consumer)} and * {@link Spliterator.OfInt#forEachRemaining(java.util.function.Consumer)}. * Traversal of primitive values using boxing-based methods * {@link #tryAdvance tryAdvance()} and * {@link #forEachRemaining(java.util.function.Consumer) forEachRemaining()} * does not affect the order in which the values, transformed to boxed values, * are encountered. * * @apiNote *

Spliterators, like {@code Iterator}s, are for traversing the elements of * a source. The {@code Spliterator} API was designed to support efficient * parallel traversal in addition to sequential traversal, by supporting * decomposition as well as single-element iteration. In addition, the * protocol for accessing elements via a Spliterator is designed to impose * smaller per-element overhead than {@code Iterator}, an d to avoid the inherent * race involved in having separate methods for {@code hasNext()} and * {@code next()}. Spliterator支持高效的,并行的操作。 支持解耦,分解,氮元素的遍历。 此外,通过accessing协议。。。 相对于 Iterator,遍历元素的时候成本更低。 原因: 之前的{@code hasNext()} and {@code next()}.搭配使用存在竞争。 现在直接使用一个tryAdvance()方法就解决了这两个方法实现的事情。 * *

For mutable sources, arbitrary and non-deterministic behavior may occur if * the source is structurally interfered with (elements added, replaced, or * removed) between the time that the Spliterator binds to its data source and * the end of traversal. For example, such interference will produce arbitrary, * non-deterministic results when using the {@code java.util.stream} framework. 如果源在结构上被修改了(增删改),在绑定迭代器之后和执行完毕之前这段时间内进行任意修改。 行为就是不确定的了。 所以在使用流框架的时候,要求源是不可变的 * *

Structural interference of a source can be managed in the following ways * (in approximate order of decreasing desirability): 源结构上的修改,是可以通过如下几个方式去修改的 *

    *
  • The source cannot be structurally interfered with. 如,源是不允许被修改的。 *
    For example, an instance of * {@link java.util.concurrent.CopyOnWriteArrayList} is an immutable source. * A Spliterator created from the source reports a characteristic of * {@code IMMUTABLE}.
  • 如:CopyOnWriteArrayList是一个不可变的源。 先拷贝,再追加。 (但是效率会下降。)适合读多写少的操作。 *
  • The source manages concurrent modifications. 源本身自己去管理并发。 *
    For example, a key set of a {@link java.util.concurrent.ConcurrentHashMap} * is a concurrent source. A Spliterator created from the source reports a * characteristic of {@code CONCURRENT}.
  • 如:ConcurrentHashMap 。 创建的是并发源 *
  • The mutable source provides a late-binding and fail-fast Spliterator. *
    Late binding narrows the window during which interference can affect * the calculation; fail-fast detects, on a best-effort basis, that structural * interference has occurred after traversal has commenced and throws * {@link ConcurrentModificationException}. For example, {@link ArrayList}, * and many other non-concurrent {@code Collection} classes in the JDK, provide * a late-binding, fail-fast spliterator.
  • 可变的源提供了延迟绑定和快速失败的迭代分割器。 会限制时间点的缩短。 如果在遍历中修改,则会抛出ConcurrentModificationException。 *
  • The mutable source provides a non-late-binding but fail-fast Spliterator. *
    The source increases the likelihood of throwing * {@code ConcurrentModificationException} since the window of potential * interference is larger.
  • *
  • The mutable source provides a late-binding and non-fail-fast Spliterator. *
    The source risks arbitrary, non-deterministic behavior after traversal * has commenced since interference is not detected. *
  • *
  • The mutable source provides a non-late-binding and non-fail-fast * Spliterator. *
    The source increases the risk of arbitrary, non-deterministic behavior * since non-detected interference may occur after construction. *
  • 总结。 1. 源是不是并发的 2. 是不是快速绑定的,是不是快速失败的(2*2 组合的四种情况。) *
* 串行案例 *

Example. Here is a class (not a very useful one, except * for illustration) that maintains an array in which the actual data * are held in even locations, and unrelated tag data are held in odd * locations. Its Spliterator ignores the tags. 如:类维护了一个数组。 实际的数据是在偶数的位置上存放。不想管的标签数据是存放在奇数位置上。 * *

 {@code
 * class TaggedArray {
 *   private final Object[] elements; // immutable after construction
 *   TaggedArray(T[] data, Object[] tags) {
 *     int size = data.length;
 *     if (tags.length != size) throw new IllegalArgumentException();
 *     this.elements = new Object[2 * size];
 *     for (int i = 0, j = 0; i < size; ++i) {
 *       elements[j++] = data[i];
 *       elements[j++] = tags[i];
 *     }
 *   }
 *
 *   public Spliterator spliterator() {
 *     return new TaggedArraySpliterator<>(elements, 0, elements.length);
 *   }
 *
 *   static class TaggedArraySpliterator implements Spliterator {
 *     private final Object[] array;
 *     private int origin; // current index, advanced on split or traversal
 *     private final int fence; // one past the greatest index
 *
 *     TaggedArraySpliterator(Object[] array, int origin, int fence) {
 *       this.array = array; this.origin = origin; this.fence = fence;
 *     }
 *
 *     public void forEachRemaining(Consumer action) {
 *       for (; origin < fence; origin += 2)
 *         action.accept((T) array[origin]);
 *     }
 *
 *     public boolean tryAdvance(Consumer action) {
 *       if (origin < fence) {
 *         action.accept((T) array[origin]);
 *         origin += 2;
 *         return true;
 *       }
 *       else // cannot advance
 *         return false;
 *     }
 *
 *     public Spliterator trySplit() {
 *       int lo = origin; // divide range in half
 *       int mid = ((lo + fence) >>> 1) & ~1; // force midpoint to be even
 *       if (lo < mid) { // split out left half
 *         origin = mid; // reset this Spliterator's origin
 *         return new TaggedArraySpliterator<>(array, lo, mid);
 *       }
 *       else       // too small to split
 *         return null;
 *     }
 *
 *     public long estimateSize() {
 *       return (long)((fence - origin) / 2);
 *     }
 *
 *     public int characteristics() {
 *       return ORDERED | SIZED | IMMUTABLE | SUBSIZED;
 *     }
 *   }
 * }}
* 并行案例: *

As an example how a parallel computation framework, such as the * {@code java.util.stream} package, would use Spliterator in a parallel * computation, here is one way to implement an associated parallel forEach, * that illustrates the primary usage idiom of splitting off subtasks until * the estimated amount of work is small enough to perform * sequentially. Here we assume that the order of processing across * subtasks doesn't matter; different (forked) tasks may further split * and process elements concurrently in undetermined order. This * example uses a {@link java.util.concurrent.CountedCompleter}; * similar usages apply to other parallel task constructions. * *

{@code
 * static  void parEach(TaggedArray a, Consumer action) {
 *   Spliterator s = a.spliterator();
 *   long targetBatchSize = s.estimateSize() / (ForkJoinPool.getCommonPoolParallelism() * 8);
 *   new ParEach(null, s, action, targetBatchSize).invoke();
 * }
 *
 * static class ParEach extends CountedCompleter {
 *   final Spliterator spliterator;
 *   final Consumer action;
 *   final long targetBatchSize;
 *
 *   ParEach(ParEach parent, Spliterator spliterator,
 *           Consumer action, long targetBatchSize) {
 *     super(parent);
 *     this.spliterator = spliterator; this.action = action;
 *     this.targetBatchSize = targetBatchSize;
 *   }
 *
 *   public void compute() {
 *     Spliterator sub;
 *     while (spliterator.estimateSize() > targetBatchSize &&
 *            (sub = spliterator.trySplit()) != null) {
 *       addToPendingCount(1);
 *       new ParEach<>(this, sub, action, targetBatchSize).fork();
 *     }
 *     spliterator.forEachRemaining(action);
 *     propagateCompletion();
 *   }
 * }}
* * @implNote * If the boolean system property {@code org.openjdk.java.util.stream.tripwire} * is set to {@code true} then diagnostic warnings are reported if boxing of * primitive values occur when operating on primitive subtype specializations. * * @param the type of elements returned by this Spliterator * * @see Collection * @since 1.8 */
  • serial-thread-confinement

我们再来看看Spliterator类中的方法

  1. tryAdvance() 尝试遍历,对元素执行动作。
    /**
     * If a remaining element exists, performs the given action on it,
     * returning {@code true}; else returns {@code false}.  If this
     * Spliterator is {@link #ORDERED} the action is performed on the
     * next element in encounter order.  Exceptions thrown by the
     * action are relayed to the caller.
     *
     * @param action The action
     * @return {@code false} if no remaining elements existed
     * upon entry to this method, else {@code true}.
     * @throws NullPointerException if the specified action is null
     */
    boolean tryAdvance(Consumer action);
  1. forEachRemaining() 。通过函数式接口 调用tryAdvance().
    /**
     * Performs the given action for each remaining element, sequentially in
     * the current thread, until all elements have been processed or the action
     * throws an exception.  If this Spliterator is {@link #ORDERED}, actions
     * are performed in encounter order.  Exceptions thrown by the action
     * are relayed to the caller.
     *
     * @implSpec
     * The default implementation repeatedly invokes {@link #tryAdvance} until
     * it returns {@code false}.  It should be overridden whenever possible.
     *
     * @param action The action
     * @throws NullPointerException if the specified action is null
     */
    default void forEachRemaining(Consumer action) {
        do { } while (tryAdvance(action));
    }
  1. trySplit() 尝试进行分割
/**
     * If this spliterator can be partitioned, returns a Spliterator
     * covering elements, that will, upon return from this method, not
     * be covered by this Spliterator.
     如果这个分割迭代器能够被进行分割。就会返回一个 涵盖这个元素的Spliterator,
     分割出来的新的Spliterator可能会被继续分割,剩下的继续又当前的Spliterator涵盖
     *
     * 

If this Spliterator is {@link #ORDERED}, the returned Spliterator * must cover a strict prefix of the elements. 如果 Spliterator is {@link #ORDERED}。返回的必须是ORDERED的 * *

Unless this Spliterator covers an infinite number of elements, * repeated calls to {@code trySplit()} must eventually return {@code null}. 除非这个 Spliterator 涵盖的事一个无限的元素。 否则,必须被确认返回个数是确定的。 重复的去继续分割,分割到不能再分割。 (一定会有这样的情况。) * Upon non-null return: *

    *
  • the value reported for {@code estimateSize()} before splitting, * must, after splitting, be greater than or equal to {@code estimateSize()} * for this and the returned Spliterator; and
  • *
  • if this Spliterator is {@code SUBSIZED}, then {@code estimateSize()} * for this spliterator before splitting must be equal to the sum of * {@code estimateSize()} for this and the returned Spliterator after * splitting.
  • *
如果不会空: 分割前的 estimateSize()的返回值,必须大于等于分割之后estimateSize()的返回值。 如果 Spliterator is {@code SUBSIZED},那么 分割之前 estimateSize()的大小,必须等于 分割之后的 estimateSize() 和返回来的值的大小。(分割前后:必须 8 = 4+4.) * *

This method may return {@code null} for any reason, * including emptiness, inability to split after traversal has * commenced, data structure constraints, and efficiency * considerations. 这个放个出于以下原因,都会返回Null值 1. emptiness * * @apiNote * An ideal {@code trySplit} method efficiently (without * traversal) divides its elements exactly in half, allowing * balanced parallel computation. Many departures from this ideal * remain highly effective; for example, only approximately * splitting an approximately balanced tree, or for a tree in * which leaf nodes may contain either one or two elements, * failing to further split these nodes. However, large * deviations in balance and/or overly inefficient {@code * trySplit} mechanics typically result in poor parallel * performance. @API文档 一种理想的trySplit()方法,会恰好将元素分为两半。允许平衡的并行计算。 很多情况下违背了这种理想的情况。 比如说:只是分割一个嫉妒不平衡的一个数,数中只有两个节点。等。不能再次进行分割。 然而,很不平衡的这种机制,会导致并发效率的极度降低。 * * @return a {@code Spliterator} covering some portion of the * elements, or {@code null} if this spliterator cannot be split 返回一个Spliterator */ Spliterator trySplit();

  1. estimateSize() 估算大小。
    /**
     * Returns an estimate of the number of elements that would be
     * encountered by a {@link #forEachRemaining} traversal, or returns {@link
     * Long#MAX_VALUE} if infinite, unknown, or too expensive to compute.
     返回元素数量的估算值。(会被forEachRemaining 遍历的元素)
     infinite, unknown, or too expensive to compute.这几种情况会返回:MAX_VALUE
     
     *
     * 

If this Spliterator is {@link #SIZED} and has not yet been partially * traversed or split, or this Spliterator is {@link #SUBSIZED} and has * not yet been partially traversed, this estimate must be an accurate * count of elements that would be encountered by a complete traversal. * Otherwise, this estimate may be arbitrarily inaccurate, but must decrease * as specified across invocations of {@link #trySplit}. 如果Spliterator是SIZED 或者是SUBSIZED 。那个 这个元素的estimate值一定是精确的。 然而,必须要减少 trySplit 的调用。 * * @apiNote * Even an inexact estimate is often useful and inexpensive to compute. * For example, a sub-spliterator of an approximately balanced binary tree * may return a value that estimates the number of elements to be half of * that of its parent; if the root Spliterator does not maintain an * accurate count, it could estimate size to be the power of two * corresponding to its maximum depth. 甚至一个不太精确的估算,也是有用的。 * * @return the estimated size, or {@code Long.MAX_VALUE} if infinite, * unknown, or too expensive to compute. */ long estimateSize();

  1. getExactSizeIfKnown() 如果知道的话就会返回确定的大小。
    /**
     * Convenience method that returns {@link #estimateSize()} if this
     * Spliterator is {@link #SIZED}, else {@code -1}.
     如果Spliterator是SIZED的话, estimateSize就会返回确定的大小。
     
     * @implSpec
     * The default implementation returns the result of {@code estimateSize()}
     * if the Spliterator reports a characteristic of {@code SIZED}, and
     * {@code -1} otherwise.
     *
     * @return the exact size, if known, else {@code -1}.
     */
    default long getExactSizeIfKnown() {
        return (characteristics() & SIZED) == 0 ? -1L : estimateSize();
    }
  1. characteristics() 特性值。
/**
     * Returns a set of characteristics of this Spliterator and its
     * elements. The result is represented as ORed values from {@link
     * #ORDERED}, {@link #DISTINCT}, {@link #SORTED}, {@link #SIZED},
     * {@link #NONNULL}, {@link #IMMUTABLE}, {@link #CONCURRENT},
     * {@link #SUBSIZED}.  Repeated calls to {@code characteristics()} on
     * a given spliterator, prior to or in-between calls to {@code trySplit},
     * should always return the same result.
     返回这个Spliterator的特性值的集合。
     {@link#ORDERED},
     {@link #DISTINCT}, 
     {@link #SORTED}, 
     {@link #SIZED},
     {@link #NONNULL},
     {@link #IMMUTABLE}, 
     {@link #CONCURRENT},
     {@link #SUBSIZED}
     这8个,在下面有定义。
     
     *
     * 

If a Spliterator reports an inconsistent set of * characteristics (either those returned from a single invocation * or across multiple invocations), no guarantees can be made * about any computation using this Spliterator. * * @apiNote The characteristics of a given spliterator before splitting * may differ from the characteristics after splitting. For specific * examples see the characteristic values {@link #SIZED}, {@link #SUBSIZED} * and {@link #CONCURRENT}. 具体的例子看下面的说明。 * * @return a representation of characteristics */ int characteristics();

  1. hasCharacteristics(int characteristics) 查看是否包含给定的特性值
/**
     * Returns {@code true} if this Spliterator's {@link
     * #characteristics} contain all of the given characteristics.
     *
     * @implSpec
     * The default implementation returns true if the corresponding bits
     * of the given characteristics are set.
     *
     * @param characteristics the characteristics to check for
     * @return {@code true} if all the specified characteristics are present,
     * else {@code false}
     */
    default boolean hasCharacteristics(int characteristics) {
        return (characteristics() & characteristics) == characteristics;
    }
  1. getComparator() :抛出一个不可实现的状态异常。
/**
     * If this Spliterator's source is {@link #SORTED} by a {@link Comparator},
     * returns that {@code Comparator}. If the source is {@code SORTED} in
     * {@linkplain Comparable natural order}, returns {@code null}.  Otherwise,
     * if the source is not {@code SORTED}, throws {@link IllegalStateException}.
     如果源是有序的,返回用于排序的  Comparator
     如果是按照自然排序的,就返回空 (就不需要比较器)
     否则就抛出异常,
     *
     * @implSpec
     * The default implementation always throws {@link IllegalStateException}.
     *
     * @return a Comparator, or {@code null} if the elements are sorted in the
     * natural order.
     * @throws IllegalStateException if the spliterator does not report
     *         a characteristic of {@code SORTED}.
     */
    default Comparator getComparator() {
        throw new IllegalStateException();
    }
  1. 8个特性值
ORDERED
DISTINCT
SORTED
SIZED
NONNULL
IMMUTABLE
CONCURRENT
SUBSIZED
   //更多的是用在并发的时候,指定执行哪些内容。
    

我们再来看看Spliterator中的8种Characteristic

/**
     * Characteristic value signifying that an encounter order is defined for
     * elements. If so, this Spliterator guarantees that method
     * {@link #trySplit} splits a strict prefix of elements, that method
     * {@link #tryAdvance} steps by one element in prefix order, and that
     * {@link #forEachRemaining} performs actions in encounter order.
     *
     * 

A {@link Collection} has an encounter order if the corresponding * {@link Collection#iterator} documents an order. If so, the encounter * order is the same as the documented order. Otherwise, a collection does * not have an encounter order. * * @apiNote Encounter order is guaranteed to be ascending index order for * any {@link List}. But no order is guaranteed for hash-based collections * such as {@link HashSet}. Clients of a Spliterator that reports * {@code ORDERED} are expected to preserve ordering constraints in * non-commutative parallel computations. */ public static final int ORDERED = 0x00000010; /** * Characteristic value signifying that, for each pair of * encountered elements {@code x, y}, {@code !x.equals(y)}. This * applies for example, to a Spliterator based on a {@link Set}. */ public static final int DISTINCT = 0x00000001; /** * Characteristic value signifying that encounter order follows a defined * sort order. If so, method {@link #getComparator()} returns the associated * Comparator, or {@code null} if all elements are {@link Comparable} and * are sorted by their natural ordering. * *

A Spliterator that reports {@code SORTED} must also report * {@code ORDERED}. * * @apiNote The spliterators for {@code Collection} classes in the JDK that * implement {@link NavigableSet} or {@link SortedSet} report {@code SORTED}. */ public static final int SORTED = 0x00000004; /** * Characteristic value signifying that the value returned from * {@code estimateSize()} prior to traversal or splitting represents a * finite size that, in the absence of structural source modification, * represents an exact count of the number of elements that would be * encountered by a complete traversal. 在执行遍历或者分割之前,由estimateSize返回的值,表示一个有序的大小。 表示元素的数量的精确的值。 * * @apiNote Most Spliterators for Collections, that cover all elements of a * {@code Collection} report this characteristic. Sub-spliterators, such as * those for {@link HashSet}, that cover a sub-set of elements and * approximate their reported size do not. 大部分对于Collections的分割迭代器,一般都会有这个特性值。 */ public static final int SIZED = 0x00000040; /** * Characteristic value signifying that the source guarantees that * encountered elements will not be {@code null}. (This applies, * for example, to most concurrent collections, queues, and maps.) */ public static final int NONNULL = 0x00000100; /** * Characteristic value signifying that the element source cannot be * structurally modified; that is, elements cannot be added, replaced, or * removed, so such changes cannot occur during traversal. A Spliterator * that does not report {@code IMMUTABLE} or {@code CONCURRENT} is expected * to have a documented policy (for example throwing * {@link ConcurrentModificationException}) concerning structural * interference detected during traversal. 指定元素的源是不能被修改的,不能被(be added, replaced, or removed)。 在执行的时候,如果发现被修改,没有返回,则会抛出ConcurrentModificationException并发修改异常。 */ public static final int IMMUTABLE = 0x00000400; /** * Characteristic value signifying that the element source may be safely * concurrently modified (allowing additions, replacements, and/or removals) * by multiple threads without external synchronization. If so, the * Spliterator is expected to have a documented policy concerning the impact * of modifications during traversal. 表示元素的源能够安全的被并发修改。允许 modified (allowing additions, replacements, and/or removals)。 不需要外部的同步化的操作。Spliterator的提供了允许被修改的策略。 * *

A top-level Spliterator should not report both {@code CONCURRENT} and * {@code SIZED}, since the finite size, if known, may change if the source * is concurrently modified during traversal. Such a Spliterator is * inconsistent and no guarantees can be made about any computation using * that Spliterator. Sub-spliterators may report {@code SIZED} if the * sub-split size is known and additions or removals to the source are not * reflected when traversing. 顶层的Spliterator 不应该同时返回:{@code CONCURRENT} and {@code SIZED}。 因为两者之间存在一定的矛盾性。 这个的Spliterator 是不一直到, 得到的Sub-spliterators 可能会返回SIZED。 * * @apiNote Most concurrent collections maintain a consistency policy * guaranteeing accuracy with respect to elements present at the point of * Spliterator construction, but possibly not reflecting subsequent * additions or removals. 大多是的这种并发性的集合,都会被维护一定的策略。 :原有的Spliterator ,不会去影响子的Spliterator */ public static final int CONCURRENT = 0x00001000; /** * Characteristic value signifying that all Spliterators resulting from * {@code trySplit()} will be both {@link #SIZED} and {@link #SUBSIZED}. * (This means that all child Spliterators, whether direct or indirect, will * be {@code SIZED}.) * *

A Spliterator that does not report {@code SIZED} as required by * {@code SUBSIZED} is inconsistent and no guarantees can be made about any * computation using that Spliterator. A Spliterator如果没有返回要求的SIZED。 是没有明确的保证的。 * * @apiNote Some spliterators, such as the top-level spliterator for an * approximately balanced binary tree, will report {@code SIZED} but not * {@code SUBSIZED}, since it is common to know the size of the entire tree * but not the exact sizes of subtrees. 有一些Spliterator。如二叉树的整个树的大小,我们得知总的数,但是不知道子的数。 */ public static final int SUBSIZED = 0x00004000;

以上就是关于spliterator的interface所有内容。

Spliterator都支持哪些事情?上面的8个方法。就是具体功能的实现。

OfPrimitive

专门针对于原生的迭代器(int, long, double)

/**
     * A Spliterator specialized for primitive values.
     *
     * @param  the type of elements returned by this Spliterator.  The
     * type must be a wrapper type for a primitive type, such as {@code Integer}
     * for the primitive {@code int} type.
     * @param  the type of primitive consumer.  The type must be a
     * primitive specialization of {@link java.util.function.Consumer} for
     * {@code T}, such as {@link java.util.function.IntConsumer} for
     * {@code Integer}.
     * @param  the type of primitive Spliterator.  The type must be
     * a primitive specialization of Spliterator for {@code T}, such as
     * {@link Spliterator.OfInt} for {@code Integer}.
     *
     * @see Spliterator.OfInt
     * @see Spliterator.OfLong
     * @see Spliterator.OfDouble
     * @since 1.8
     */
public interface OfPrimitive>
            extends Spliterator {
        @Override
        T_SPLITR trySplit();

        /**
         * If a remaining element exists, performs the given action on it,
         * returning {@code true}; else returns {@code false}.  If this
         * Spliterator is {@link #ORDERED} the action is performed on the
         * next element in encounter order.  Exceptions thrown by the
         * action are relayed to the caller.
         *
         * @param action The action
         * @return {@code false} if no remaining elements existed
         * upon entry to this method, else {@code true}.
         * @throws NullPointerException if the specified action is null
         */
        @SuppressWarnings("overloads")
        boolean tryAdvance(T_CONS action);

        /**
         * Performs the given action for each remaining element, sequentially in
         * the current thread, until all elements have been processed or the
         * action throws an exception.  If this Spliterator is {@link #ORDERED},
         * actions are performed in encounter order.  Exceptions thrown by the
         * action are relayed to the caller.
         *
         * @implSpec
         * The default implementation repeatedly invokes {@link #tryAdvance}
         * until it returns {@code false}.  It should be overridden whenever
         * possible.
         *
         * @param action The action
         * @throws NullPointerException if the specified action is null
         */
        @SuppressWarnings("overloads")
        default void forEachRemaining(T_CONS action) {
            do { } while (tryAdvance(action));
        }
    }

提供了三个特化版本。实现了OfPrimitive接口。

  1. OfInt
  2. OfLong
  3. OfDouble
OfInt
public interface OfInt extends OfPrimitive {

        @Override
        OfInt trySplit();

        @Override
        boolean tryAdvance(IntConsumer action);

        @Override
        default void forEachRemaining(IntConsumer action) {
            do { } while (tryAdvance(action));
        }

        /**
         * {@inheritDoc}
         * @implSpec
         * If the action is an instance of {@code IntConsumer} then it is cast
         * to {@code IntConsumer} and passed to
         * {@link #tryAdvance(java.util.function.IntConsumer)}; otherwise
         * the action is adapted to an instance of {@code IntConsumer}, by
         * boxing the argument of {@code IntConsumer}, and then passed to
         * {@link #tryAdvance(java.util.function.IntConsumer)}.
         */
        @Override
        default boolean tryAdvance(Consumer action) {
            if (action instanceof IntConsumer) {
                return tryAdvance((IntConsumer) action);
            }
            else {
                if (Tripwire.ENABLED)
                    Tripwire.trip(getClass(),
                                  "{0} calling Spliterator.OfInt.tryAdvance((IntConsumer) action::accept)");
                return tryAdvance((IntConsumer) action::accept);
            }
        }

        /**
         * {@inheritDoc}
         * @implSpec
         * If the action is an instance of {@code IntConsumer} then it is cast
         * to {@code IntConsumer} and passed to
         * {@link #forEachRemaining(java.util.function.IntConsumer)}; otherwise
         * the action is adapted to an instance of {@code IntConsumer}, by
         * boxing the argument of {@code IntConsumer}, and then passed to
         * {@link #forEachRemaining(java.util.function.IntConsumer)}.
         */
        @Override
        default void forEachRemaining(Consumer action) {
            if (action instanceof IntConsumer) {
                forEachRemaining((IntConsumer) action);
            }
            else {
                if (Tripwire.ENABLED)
                    Tripwire.trip(getClass(),
                                  "{0} calling Spliterator.OfInt.forEachRemaining((IntConsumer) action::accept)");
                forEachRemaining((IntConsumer) action::accept);
            }
        }
    }

问题:要知道Consumer和IntConsumer是没有任何继承关系的话,他们是怎么实现类型转换的呢?

 default boolean tryAdvance(Consumer action) {
            if (action instanceof IntConsumer) {
                return tryAdvance((IntConsumer) action);
            }

如果是纯粹的面向对象的,这种现象是完全不能够存在的。

但是如果是在这函数式编程的情况下,是能够存在的。

原因如下:

  1. java中存在自动装箱和拆箱的操作 (int->Integer)
  2. 强制类型的转换在纯粹的面向对象是一定要存在继承关系的,根本原因还在于函数式编程的lambda上面
  3. lambda的一切信息都是通过上下文推断出来的。(对于同一个lambda表达式,在不同类型中可能推断出来的结果是不同的。在函数式编程中,这种现象是存在的。)

用代码来解释。

你可能感兴趣的:(JAVA8学习——Stream底层的实现(学习过程))