防抖(debounce)和 节流(throttling)

防抖(debounce)和 节流(throttling)

1、防抖和节流出现的原因

防抖和节流是针对响应跟不上触发频率这类问题的两种解决方案。

  • 在给DOM绑定事件时,有些事件我们是无法控制触发频率的。 如鼠标移动事件onmousemove, 滚动滚动条事件onscroll,窗口大小改变事件onresize,瞬间的操作都会导致这些事件会被高频触发。 如果事件的回调函数较为复杂,就会导致响应跟不上触发,出现页面卡顿,假死现象。

  • 在实时检查输入时,如果我们绑定onkeyup事件发请求去服务端检查,用户输入过程中,事件的触发频率也会很高,会导致大量的请求发出,响应速度会大大跟不上触发。

ps:防抖和节流的作用都是防止函数多次调用。区别在于,假设一个用户一直触发这个函数,且每次触发函数的间隔小于wait,防抖的情况下只会调用一次,而节流的 情况会每隔一定时间(参数wait)调用函数。

防抖

实现简单防抖


function debounce(fn, wait) {
    // 缓存定时器
    var timer = null;    
    return function(...args) {
        if (timer) clearTimeout(timer)
            timer = setTimeout(() => {
            fn.apply(this, args)
        }, wait)
    }
}

// 处理函数
function handle() {    
    console.log('测试防抖'); 
}

// 滚动事件
window.addEventListener('scroll', debounce(handle, 1000));

上面的防抖函数没有立即执行事件,

实现带有立即执行的防抖函数


/**
 * 防抖函数,返回函数连续调用时,空闲时间必须大于或等于 wait,func 才会执行
 *
 * @param  {function} func        回调函数
 * @param  {number}   wait        表示时间窗口的间隔
 * @param  {boolean}  immediate   设置为ture时,是否立即调用函数
 * @return {function}             返回客户调用函数
 */
function debounce (func, wait = 50, immediate = true) {
  let timer, context, args;

  // 延迟执行函数
  const later = () => setTimeout(() => {
      timer = null;
    // 延迟执行的情况下,函数会在延迟函数中执行
    // 使用到之前缓存的参数和上下文
    if (!immediate) {
        func.apply(context, args)
        context = args = null
    }
   
  },wait)

   return function(...params) {
    // 如果没有创建延迟执行函数(later),就创建一个
    if (!timer) {
      timer = later()
      // 如果是立即执行,调用函数
      // 否则缓存参数和调用上下文
      if (immediate) {
        func.apply(this, params)
      } else {
        context = this
        args = params
      }
    // 如果已有延迟执行函数(later),调用的时候清除原来的并重新设定一个
    // 这样做延迟函数会重新计时
    } else {
      clearTimeout(timer)
      timer = later()
    }
  }
}

节流

防抖动和节流本质是不一样的。防抖动是将多次执行变为最后一次执行,节流是将多次执行变成每隔一段时间执行。

实现节流


/**
 * underscore 节流函数,返回函数连续调用时,func 执行频率限定为 次 / wait
 *
 * @param  {function}   func      回调函数
 * @param  {number}     wait      表示时间窗口的间隔
 * @param  {object}     options   如果想忽略开始函数的的调用,传入{leading: false}。
 *                                如果想忽略结尾函数的调用,传入{trailing: false}
 *                                两者不能共存,否则函数不能执行
 * @return {function}             返回客户调用函数
 */
_.throttle = function(func, wait, options) {
    var context, args, result;
    var timeout = null;
    // 之前的时间戳
    var previous = 0;
    // 如果 options 没传则设为空对象
    if (!options) options = {};
    // 定时器回调函数
    var later = function() {
      // 如果设置了 leading,就将 previous 设为 0
      // 用于下面函数的第一个 if 判断
      previous = options.leading === false ? 0 : _.now();
      // 置空一是为了防止内存泄漏,二是为了下面的定时器判断
      timeout = null;
      result = func.apply(context, args);
      if (!timeout) context = args = null;
    };
    return function() {
      // 获得当前时间戳
      var now = _.now();
      // 首次进入前者肯定为 true
      // 如果需要第一次不执行函数
      // 就将上次时间戳设为当前的
      // 这样在接下来计算 remaining 的值时会大于0
      if (!previous && options.leading === false) previous = now;
      // 计算剩余时间
      var remaining = wait - (now - previous);
      context = this;
      args = arguments;
      // 如果当前调用已经大于上次调用时间 + wait
      // 或者用户手动调了时间
      // 如果设置了 trailing,只会进入这个条件
      // 如果没有设置 leading,那么第一次会进入这个条件
      // 还有一点,你可能会觉得开启了定时器那么应该不会进入这个 if 条件了
      // 其实还是会进入的,因为定时器的延时
      // 并不是准确的时间,很可能你设置了2秒
      // 但是他需要2.2秒才触发,这时候就会进入这个条件
      if (remaining <= 0 || remaining > wait) {
        // 如果存在定时器就清理掉否则会调用二次回调
        if (timeout) {
          clearTimeout(timeout);
          timeout = null;
        }
        previous = now;
        result = func.apply(context, args);
        if (!timeout) context = args = null;
      } else if (!timeout && options.trailing !== false) {
        // 判断是否设置了定时器和 trailing
        // 没有的话就开启一个定时器
        // 并且不能不能同时设置 leading 和 trailing
        timeout = setTimeout(later, remaining);
      }
      return result;
    };
  };

本文主要参考:前端面试之道

你可能感兴趣的:(防抖(debounce)和 节流(throttling))