哈希表的简单介绍
1) 哈希表在使用层面上可以理解为一种集合结构
2) 如果只有key,没有伴随数据value,可以使用HashSet结构(C++中叫UnOrderedSet)
3) 如果既有key,又有伴随数据value,可以使用HashMap结构(C++中叫UnOrderedMap)
4) 有无伴随数据,是HashMap和HashSet唯一的区别,底层的实际结构是一回事
5) 使用哈希表增(put)、删(remove)、改(put)和查(get )的操作,可以认为时间复杂度为O(1),但是常数时间比较大
6) 放入哈希表的东西,如果是基础类型,内部按值传递,内存占用就是这个东西的大小
7) 放入哈希表的东西,如果不是基础类型,内部按引用传递,内存占用是这个东西内存地址的大小
有序表的简单介绍
1) 有序表在使用层面上可以理解为一种集合结构
2) 如果只有key,没有伴随数据value,可以使用TreeSet结构(C++中叫OrderedSet)
3) 如果既有key,又有伴随数据value,可以使用TreeMap结构(C++中叫OrderedMap)
4) 有无伴随数据,是TreeSet和TreeMap唯一的区别,底层的实际结构是一回事
5) 有序表和哈希表的区别是,有序表把key按照顺序组织起来,而哈希表完全不组织
5) 红黑树、AVL树、size-balance-tree和跳表等都属于有序表结构,只是底层具体实现 不同
6) 放入有序表的东西,如果是基础类型,内部按值传递,内存占用就是这个东西的大小
7) 放入有序表的东西,如果不是基础类型,必须提供比较器,内部按引用传递,内存占用是这个东西内存地址的大小
8) 不管是什么底层具体实现,只要是有序表,都有以下固定的基本功能和固定的时间复杂度
有序表的固定操作
1) void put (K key, V va l ue):将一个(key, va l ue)记录加入到表中,或者将key的记录更新成value
2) V get (K key):根据给定的key,查询value并返回。
3) void remove (K key):移除key的记录。
4) boolean containsKey (K key):询问是否有关于key的记录。
5) K firstKey ():返回所有键值的排序结果中,最左(最小)的那个。
6) K lastKey():返回所有键值的排序结果中,最右(最大)的那个。
7) K floorKey (K key):如果表中存入过key,返回key;否则返回所有键值的排序结果,key的前一个。
8) K ceilingKey(K key):如果表中存入过key,返回key;否则返回所有键值的排序结果中, key的后一个。
以上所有操作时间复杂度都是0(IogN)
import java.util.Comparator;
import java.util.HashMap;
import java.util.HashSet;
import java.util.TreeMap;
import java.util.TreeSet;
public class HashAndTree {
public static class Node {
public int value;
public Node next;
public Node(int val) {
value = val;
}
}
public static class NodeComparator implements Comparator {
@Override
public int compare(Node o1, Node o2) {
return o1.value - o2.value;
}
}
public static void main(String[] args) {
Node nodeA = null;
Node nodeB = null;
Node nodeC = null;
// hashSet1的key是基础类型->int类型
HashSet hashSet1 = new HashSet<>();
hashSet1.add(3);
System.out.println(hashSet1.contains(3));
hashSet1.remove(3);
System.out.println(hashSet1.contains(3));
// hashSet2的key是非基础类型->Node类型
nodeA = new Node(1);
nodeB = new Node(1);
HashSet hashSet2 = new HashSet<>();
hashSet2.add(nodeA);
System.out.println(hashSet2.contains(nodeA));
System.out.println(hashSet2.contains(nodeB));
hashSet2.remove(nodeA);
System.out.println(hashSet2.contains(nodeA));
// hashMap1的key是基础类型->String类型
HashMap hashMap1 = new HashMap<>();
String str1 = "key";
String str2 = "key";
hashMap1.put(str1, 1);
System.out.println(hashMap1.containsKey(str1));
System.out.println(hashMap1.containsKey(str2));
System.out.println(hashMap1.get(str1));
System.out.println(hashMap1.get(str2));
hashMap1.put(str2, 2);
System.out.println(hashMap1.containsKey(str1));
System.out.println(hashMap1.containsKey(str2));
System.out.println(hashMap1.get(str1));
System.out.println(hashMap1.get(str2));
hashMap1.remove(str1);
System.out.println(hashMap1.containsKey(str1));
System.out.println(hashMap1.containsKey(str2));
// hashMap2的key是非基础类型->Node类型
nodeA = new Node(1);
nodeB = new Node(1);
HashMap hashMap2 = new HashMap<>();
hashMap2.put(nodeA, "A节点");
System.out.println(hashMap2.containsKey(nodeA));
System.out.println(hashMap2.containsKey(nodeB));
System.out.println(hashMap2.get(nodeA));
System.out.println(hashMap2.get(nodeB));
hashMap2.put(nodeB, "B节点");
System.out.println(hashMap2.containsKey(nodeA));
System.out.println(hashMap2.containsKey(nodeB));
System.out.println(hashMap2.get(nodeA));
System.out.println(hashMap2.get(nodeB));
// treeSet的key是非基础类型->Node类型
nodeA = new Node(5);
nodeB = new Node(3);
nodeC = new Node(7);
treeSet = new TreeSet<>(new NodeComparator());
// 要提供Node类型的比较器
try {
treeSet.add(nodeA);
treeSet.add(nodeB);
treeSet.add(nodeC);
System.out.println("这次节点都加入了");
} catch (Exception e) {
System.out.println(e.getMessage());
}
// 展示有序表常用操作
TreeMap treeMap1 = new TreeMap<>();
treeMap1.put(7, "我是7");
treeMap1.put(5, "我是5");
treeMap1.put(4, "我是4");
treeMap1.put(3, "我是3");
treeMap1.put(9, "我是9");
treeMap1.put(2, "我是2");
System.out.println(treeMap1.containsKey(5));
System.out.println(treeMap1.get(5));
System.out.println(treeMap1.firstKey() + ", 我最小");
System.out.println(treeMap1.lastKey() + ", 我最大");
System.out.println(treeMap1.floorKey(8) + ", 在表中所有<=8的数中,我离8最近");
System.out.println(treeMap1.ceilingKey(8) + ", 在表中所有>=8的数中,我离8最近");
System.out.println(treeMap1.floorKey(7) + ", 在表中所有<=7的数中,我离7最近");
System.out.println(treeMap1.ceilingKey(7) + ", 在表中所有>=7的数中,我离7最近");
treeMap1.remove(5);
System.out.println(treeMap1.get(5) + ", 删了就没有了哦");
}
}
单链表的节点结构
Class Node< v > {
V value;
Node next; }
由以上结构的节点依次连接起来所形成的链叫单链表结构。
双链表的节点结构
Class Node< V >{
V value;
Node next;
Node last; }
由以上结构的节点依次连接起来所形成的链叫双链表结构。
单链表和双链表结构只需要给定一个头部节点head,就可以找到剩下的所有的节点。
反转单向和双向链表
【题目】分别实现反转单向链表和反转双向链表的函数
【要求】如果链表长度为N,时间复杂度要求为0(N),额外空间复杂度要求为 0(1)
public class ReverseList {
public static class Node {
public int value;
public Node next;
public Node(int data) {
this.value = data;
}
}
public static Node reverseList(Node head) {
Node pre = null;
Node next = null;
while (head != null) {
next = head.next;
head.next = pre;
pre = head;
head = next;
}
return pre;
}
public static class DoubleNode {
public int value;
public DoubleNode last;
public DoubleNode next;
public DoubleNode(int data) {
this.value = data;
}
}
public static DoubleNode reverseList(DoubleNode head) {
DoubleNode pre = null;
DoubleNode next = null;
while (head != null) {
next = head.next;
head.next = pre;
head.last = next;
pre = head;
head = next;
}
return pre;
}
public static void printLinkedList(Node head) {
System.out.print("Linked List: ");
while (head != null) {
System.out.print(head.value + " ");
head = head.next;
}
System.out.println();
}
public static void printDoubleLinkedList(DoubleNode head) {
System.out.print("Double Linked List: ");
DoubleNode end = null;
while (head != null) {
System.out.print(head.value + " ");
end = head;
head = head.next;
}
System.out.print("| ");
while (end != null) {
System.out.print(end.value + " ");
end = end.last;
}
System.out.println();
}
public static void main(String[] args) {
Node head1 = new Node(1);
head1.next = new Node(2);
head1.next.next = new Node(3);
printLinkedList(head1);
head1 = reverseList(head1);
printLinkedList(head1);
DoubleNode head2 = new DoubleNode(1);
head2.next = new DoubleNode(2);
head2.next.last = head2;
head2.next.next = new DoubleNode(3);
head2.next.next.last = head2.next;
head2.next.next.next = new DoubleNode(4);
head2.next.next.next.last = head2.next.next;
printDoubleLinkedList(head2);
printDoubleLinkedList(reverseList(head2));
}
}
打印两个有序链表的公共部分
【题目】给定两个有序链表的头指针head 1和head2,打印两个链表的公共部分。
【要求】如果两个链表的长度之和为N,时间复杂度要求为0(N),额外空间复 杂度要求为0(1)
public class PrintCommonPart {
public static class Node {
public int value;
public Node next;
public Node(int data) {
this.value = data;
}
}
public static void printCommonPart(Node head1, Node head2) {
System.out.print("Common Part: ");
while (head1 != null && head2 != null) {
if (head1.value < head2.value) {
head1 = head1.next;
} else if (head1.value > head2.value) {
head2 = head2.next;
} else {
System.out.print(head1.value + " ");
head1 = head1.next;
head2 = head2.next;
}
}
System.out.println();
}
public static void printLinkedList(Node node) {
System.out.print("Linked List: ");
while (node != null) {
System.out.print(node.value + " ");
node = node.next;
}
System.out.println();
}
public static void main(String[] args) {
Node node1 = new Node(2);
node1.next = new Node(3);
node1.next.next = new Node(5);
node1.next.next.next = new Node(6);
Node node2 = new Node(1);
node2.next = new Node(2);
node2.next.next = new Node(5);
node2.next.next.next = new Node(7);
node2.next.next.next.next = new Node(8);
printLinkedList(node1);
printLinkedList(node2);
printCommonPart(node1, node2);
}
}
面试时链表解题的方法论
1) 对于笔试,不用太在乎空间复杂度,一切为了时间复杂度
2) 对于面试,时间复杂度依然放在第一位,但是一定要找到空间最省的方法
重要技巧:
1) 额外数据结构记录(哈希表等)
2) 快慢指针(熟悉code)
判断一个链表是否为回文结构
【题目】给定一个单链表的头节点head,请判断该链表是否为回文结构。
【例子】1->2->1,返回true; 1->2->2->1,返回true; 15->6->15,返回true; 1->2->3,返回false。
【例子】如果链表长度为N,时间复杂度达到0(N),额外空间复杂度达到0(1)。
import java.util.Stack;
public class Code04_IsPalindromeList {
public static class Node {
public int value;
public Node next;
public Node(int data) {
this.value = data;
}
}
// need n extra space
public static boolean isPalindrome1(Node head) {
Stack stack = new Stack();
Node cur = head;
while (cur != null) {
stack.push(cur);
cur = cur.next;
}
while (head != null) {
if (head.value != stack.pop().value) {
return false;
}
head = head.next;
}
return true;
}
// need n/2 extra space
public static boolean isPalindrome2(Node head) {
if (head == null || head.next == null) {
return true;
}
Node right = head.next;
Node cur = head;
while (cur.next != null && cur.next.next != null) {
right = right.next;
cur = cur.next.next;
}
Stack stack = new Stack();
while (right != null) {
stack.push(right);
right = right.next;
}
while (!stack.isEmpty()) {
if (head.value != stack.pop().value) {
return false;
}
head = head.next;
}
return true;
}
// need O(1) extra space
public static boolean isPalindrome3(Node head) {
if (head == null || head.next == null) {
return true;
}
Node n1 = head;
Node n2 = head;
while (n2.next != null && n2.next.next != null) { // find mid node
n1 = n1.next; // n1 -> mid
n2 = n2.next.next; // n2 -> end
}
n2 = n1.next; // n2 -> right part first node
n1.next = null; // mid.next -> null
Node n3 = null;
while (n2 != null) { // right part convert
n3 = n2.next; // n3 -> save next node
n2.next = n1; // next of right node convert
n1 = n2; // n1 move
n2 = n3; // n2 move
}
n3 = n1; // n3 -> save last node
n2 = head;// n2 -> left first node
boolean res = true;
while (n1 != null && n2 != null) { // check palindrome
if (n1.value != n2.value) {
res = false;
break;
}
n1 = n1.next; // left to mid
n2 = n2.next; // right to mid
}
n1 = n3.next;
n3.next = null;
while (n1 != null) { // recover list
n2 = n1.next;
n1.next = n3;
n3 = n1;
n1 = n2;
}
return res;
}
public static void (Node node) {
System.out.print("Linked List: ");
while (node != null) {
System.out.print(node.value + " ");
node = node.next;
}
System.out.println();
}
public static void main(String[] args) {
Node head = null;
printLinkedList(head);
System.out.print(isPalindrome1(head) + " | ");
System.out.print(isPalindrome2(head) + " | ");
System.out.println(isPalindrome3(head) + " | ");
printLinkedList(head);
head = new Node(1);
printLinkedList(head);
System.out.print(isPalindrome1(head) + " | ");
System.out.print(isPalindrome2(head) + " | ");
System.out.println(isPalindrome3(head) + " | ");
printLinkedList(head);
head = new Node(1);
head.next = new Node(2);
printLinkedList(head);
System.out.print(isPalindrome1(head) + " | ");
System.out.print(isPalindrome2(head) + " | ");
System.out.println(isPalindrome3(head) + " | ");
printLinkedList(head);
head = new Node(1);
head.next = new Node(1);
printLinkedList(head);
System.out.print(isPalindrome1(head) + " | ");
System.out.print(isPalindrome2(head) + " | ");
System.out.println(isPalindrome3(head) + " | ");
printLinkedList(head);
head = new Node(1);
head.next = new Node(2);
head.next.next = new Node(3);
printLinkedList(head);
System.out.print(isPalindrome1(head) + " | ");
System.out.print(isPalindrome2(head) + " | ");
System.out.println(isPalindrome3(head) + " | ");
printLinkedList(head);
head = new Node(1);
head.next = new Node(2);
head.next.next = new Node(1);
printLinkedList(head);
System.out.print(isPalindrome1(head) + " | ");
System.out.print(isPalindrome2(head) + " | ");
System.out.println(isPalindrome3(head) + " | ");
printLinkedList(head);
head = new Node(1);
head.next = new Node(2);
head.next.next = new Node(3);
head.next.next.next = new Node(1);
printLinkedList(head);
System.out.print(isPalindrome1(head) + " | ");
System.out.print(isPalindrome2(head) + " | ");
System.out.println(isPalindrome3(head) + " | ");
printLinkedList(head);
head = new Node(1);
head.next = new Node(2);
head.next.next = new Node(2);
head.next.next.next = new Node(1);
printLinkedList(head);
System.out.print(isPalindrome1(head) + " | ");
System.out.print(isPalindrome2(head) + " | ");
System.out.println(isPalindrome3(head) + " | ");
printLinkedList(head);
head = new Node(1);
head.next = new Node(2);
head.next.next = new Node(3);
head.next.next.next = new Node(2);
head.next.next.next.next = new Node(1);
printLinkedList(head);
System.out.print(isPalindrome1(head) + " | ");
System.out.print(isPalindrome2(head) + " | ");
System.out.println(isPalindrome3(head) + " | ");
printLinkedList(head);
}
}
将单向链表按某值划分成左边小、中间相等、右边大的形式
【题目】给定一个单链表的头节点head,节点的值类型是整型,再给定一个整 数pivoto实现一个调整链表的函数,将链表调整为左部分都是值小于pivot的 节点,中间部分都是值等于pivot的节点,右部分都是值大于pivot的节点。(各种各样的情况,讨论好边界)
【进阶】在实现原问题功能的基础上增加如下的要求
【要求】调整后所有小于pivot的节点之间的相对顺序和调整前一样,调整后所有等于pivot的节点之间的相对顺序和调整前一样,调整后所有大于pivot的节点之间的相对顺序和调整前一样
【要求】时间复杂度请达到0(N),额外空间复杂度请达到0(1)。
public class SmallerEqualBigger {
public static class Node {
public int value;
public Node next;
public Node(int data) {
this.value = data;
}
}
public static Node listPartition1(Node head, int pivot) {
if (head == null) {
return head;
}
Node cur = head;
int i = 0;
while (cur != null) {
i++;
cur = cur.next;
}
Node[] nodeArr = new Node[i];
i = 0;
cur = head;
for (i = 0; i != nodeArr.length; i++) {
nodeArr[i] = cur;
cur = cur.next;
}
arrPartition(nodeArr, pivot);
for (i = 1; i != nodeArr.length; i++) {
nodeArr[i - 1].next = nodeArr[i];
}
nodeArr[i - 1].next = null;
return nodeArr[0];
}
public static void arrPartition(Node[] nodeArr, int pivot) {
int small = -1;
int big = nodeArr.length;
int index = 0;
while (index != big) {
if (nodeArr[index].value < pivot) {
swap(nodeArr, ++small, index++);
} else if (nodeArr[index].value == pivot) {
index++;
} else {
swap(nodeArr, --big, index);
}
}
}
public static void swap(Node[] nodeArr, int a, int b) {
Node tmp = nodeArr[a];
nodeArr[a] = nodeArr[b];
nodeArr[b] = tmp;
}
public static Node listPartition2(Node head, int pivot) {
Node sH = null; // small head
Node sT = null; // small tail
Node eH = null; // equal head
Node eT = null; // equal tail
Node bH = null; // big head
Node bT = null; // big tail
Node next = null; // save next node
// every node distributed to three lists
while (head != null) {
next = head.next;
head.next = null;
if (head.value < pivot) {
if (sH == null) {
sH = head;
sT = head;
} else {
sT.next = head;
sT = head;
}
} else if (head.value == pivot) {
if (eH == null) {
eH = head;
eT = head;
} else {
eT.next = head;
eT = head;
}
} else {
if (bH == null) {
bH = head;
bT = head;
} else {
bT.next = head;
bT = head;
}
}
head = next;
}
// small and equal reconnect
if (sT != null) { //如果有小于区域
sT.next = eH;
eT = eT == null ? sT : eT; //下一步,谁去连大于区域的头,谁就变成eT
}
// all reconnect
if (eT != null) { // 如果小于区域和等于区域,不是都没有
eT.next = bH;
}
return sH != null ? sH : eH != null ? eH : bH;
}
public static void printLinkedList(Node node) {
System.out.print("Linked List: ");
while (node != null) {
System.out.print(node.value + " ");
node = node.next;
}
System.out.println();
}
public static void main(String[] args) {
Node head1 = new Node(7);
head1.next = new Node(9);
head1.next.next = new Node(1);
head1.next.next.next = new Node(8);
head1.next.next.next.next = new Node(5);
head1.next.next.next.next.next = new Node(2);
head1.next.next.next.next.next.next = new Node(5);
printLinkedList(head1);
// head1 = listPartition1(head1, 4);
head1 = listPartition2(head1, 5);
printLinkedList(head1);
}
}
复制含有随机指针节点的链表
【题目】一种特殊的单链表节点类描述如下
class Node {
int value;
Node next;
Node rand;
Node (int val) {
value = va l ;
}
}
rand指针是单链表节点结构中新增的指针,rand可能指向链表中的任意一个节 点,也可能指向null。给定一个由Node节点类型组成的无环单链表的头节点 head,请实现一个函数完成这个链表的复制,并返回复制的新链表的头节点。
【要求】时间复杂度0(N),额外空间复杂度0(1)
import java.util.HashMap;
public class CopyListWithRandom {
public static class Node {
public int value;
public Node next;
public Node rand;
public Node(int data) {
this.value = data;
}
}
public static Node copyListWithRand1(Node head) {
HashMap map = new HashMap();
Node cur = head;
while (cur != null) {
map.put(cur, new Node(cur.value));
cur = cur.next;
}
cur = head;
while (cur != null) {
map.get(cur).next = map.get(cur.next);
map.get(cur).rand = map.get(cur.rand);
cur = cur.next;
}
return map.get(head);
}
public static Node copyListWithRand2(Node head) {
if (head == null) {
return null;
}
Node cur = head;
Node next = null;
// copy node and link to every node
//1 -> 2
//1 -> 1' -> 2
while (cur != null) {
next = cur.next;
cur.next = new Node(cur.value);
cur.next.next = next;
cur = next;
}
cur = head;
Node curCopy = null;
// set copy node rand
// 1 -> 1' -> 2 -> 2'
while (cur != null) {
next = cur.next.next;
curCopy = cur.next;
curCopy.rand = cur.rand != null ? cur.rand.next : null;
cur = next;
}
Node res = head.next;
cur = head;
// split
while (cur != null) {
next = cur.next.next;
curCopy = cur.next;
cur.next = next;
curCopy.next = next != null ? next.next : null;
cur = next;
}
return res;
}
public static void printRandLinkedList(Node head) {
Node cur = head;
System.out.print("order: ");
while (cur != null) {
System.out.print(cur.value + " ");
cur = cur.next;
}
System.out.println();
cur = head;
System.out.print("rand: ");
while (cur != null) {
System.out.print(cur.rand == null ? "- " : cur.rand.value + " ");
cur = cur.next;
}
System.out.println();
}
public static void main(String[] args) {
Node head = null;
Node res1 = null;
Node res2 = null;
printRandLinkedList(head);
res1 = copyListWithRand1(head);
printRandLinkedList(res1);
res2 = copyListWithRand2(head);
printRandLinkedList(res2);
printRandLinkedList(head);
head = new Node(1);
head.next = new Node(2);
head.next.next = new Node(3);
head.next.next.next = new Node(4);
head.next.next.next.next = new Node(5);
head.next.next.next.next.next = new Node(6);
head.rand = head.next.next.next.next.next; // 1 -> 6
head.next.rand = head.next.next.next.next.next; // 2 -> 6
head.next.next.rand = head.next.next.next.next; // 3 -> 5
head.next.next.next.rand = head.next.next; // 4 -> 3
head.next.next.next.next.rand = null; // 5 -> null
head.next.next.next.next.next.rand = head.next.next.next; // 6 -> 4
printRandLinkedList(head);
res1 = copyListWithRand1(head);
printRandLinkedList(res1);
res2 = copyListWithRand2(head);
printRandLinkedList(res2);
printRandLinkedList(head);
}
}
两个单链表相交的一系列问题
【题目】给定两个可能有环也可能无环的单链表,头节点head 1和head2。请实 现一个函数,如果两个链表相交,请返回相交的第一个节点。如果不相交,返 回 nu l l
【要求】如果两个链表长度之和为N,时间复杂度请达到0(N),额外空间复杂度 请达到0(1)。
public class FindFirstIntersectNode {
public static class Node {
public int value;
public Node next;
public Node(int data) {
this.value = data;
}
}
public static Node getIntersectNode(Node head1, Node head2) {
if (head1 == null || head2 == null) {
return null;
}
Node loop1 = getLoopNode(head1);
Node loop2 = getLoopNode(head2);
if (loop1 == null && loop2 == null) {
return noLoop(head1, head2);
}
if (loop1 != null && loop2 != null) {
return bothLoop(head1, loop1, head2, loop2);
}
return null;
}
public static Node getLoopNode(Node head) {
if (head == null || head.next == null || head.next.next == null) {
return null;
}
Node n1 = head.next; // n1 -> slow
Node n2 = head.next.next; // n2 -> fast
while (n1 != n2) {
if (n2.next == null || n2.next.next == null) {
return null;
}
n2 = n2.next.next;
n1 = n1.next;
}
n2 = head; // n2 -> walk again from head
while (n1 != n2) {
n1 = n1.next;
n2 = n2.next;
}
return n1;
}
public static Node noLoop(Node head1, Node head2) {
if (head1 == null || head2 == null) {
return null;
}
Node cur1 = head1;
Node cur2 = head2;
int n = 0;
while (cur1.next != null) {
n++;
cur1 = cur1.next;
}
while (cur2.next != null) {
n--;
cur2 = cur2.next;
}
if (cur1 != cur2) {
return null;
}
cur1 = n > 0 ? head1 : head2;
cur2 = cur1 == head1 ? head2 : head1;
n = Math.abs(n);
while (n != 0) {
n--;
cur1 = cur1.next;
}
while (cur1 != cur2) {
cur1 = cur1.next;
cur2 = cur2.next;
}
return cur1;
}
public static Node bothLoop(Node head1, Node loop1, Node head2, Node loop2) {
Node cur1 = null;
Node cur2 = null;
if (loop1 == loop2) {
cur1 = head1;
cur2 = head2;
int n = 0;
while (cur1 != loop1) {
n++;
cur1 = cur1.next;
}
while (cur2 != loop2) {
n--;
cur2 = cur2.next;
}
cur1 = n > 0 ? head1 : head2;
cur2 = cur1 == head1 ? head2 : head1;
n = Math.abs(n);
while (n != 0) {
n--;
cur1 = cur1.next;
}
while (cur1 != cur2) {
cur1 = cur1.next;
cur2 = cur2.next;
}
return cur1;
} else {
cur1 = loop1.next;
while (cur1 != loop1) {
if (cur1 == loop2) {
return loop1;
}
cur1 = cur1.next;
}
return null;
}
}
public static void main(String[] args) {
// 1->2->3->4->5->6->7->null
Node head1 = new Node(1);
head1.next = new Node(2);
head1.next.next = new Node(3);
head1.next.next.next = new Node(4);
head1.next.next.next.next = new Node(5);
head1.next.next.next.next.next = new Node(6);
head1.next.next.next.next.next.next = new Node(7);
// 0->9->8->6->7->null
Node head2 = new Node(0);
head2.next = new Node(9);
head2.next.next = new Node(8);
head2.next.next.next = head1.next.next.next.next.next; // 8->6
System.out.println(getIntersectNode(head1, head2).value);
// 1->2->3->4->5->6->7->4...
head1 = new Node(1);
head1.next = new Node(2);
head1.next.next = new Node(3);
head1.next.next.next = new Node(4);
head1.next.next.next.next = new Node(5);
head1.next.next.next.next.next = new Node(6);
head1.next.next.next.next.next.next = new Node(7);
head1.next.next.next.next.next.next = head1.next.next.next; // 7->4
// 0->9->8->2...
head2 = new Node(0);
head2.next = new Node(9);
head2.next.next = new Node(8);
head2.next.next.next = head1.next; // 8->2
System.out.println(getIntersectNode(head1, head2).value);
// 0->9->8->6->4->5->6..
head2 = new Node(0);
head2.next = new Node(9);
head2.next.next = new Node(8);
head2.next.next.next = head1.next.next.next.next.next; // 8->6
System.out.println(getIntersectNode(head1, head2).value);
}
}