Leetcode:Climbing Stairs 斐波那契数

戳我去解题

You are climbing a stair case. It takes n steps to reach to the top.

Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?

 

解析:设直至第n层有f(n)中走法,因为每次只能走1步或2步,则 f(n) = f(n-1) + f(n-2)

很明显是一个斐波那契数,f(0) = 0, f(1) = 1  

1. 递归,  f(n) = f(n-1) + f(n-2) 很容易想到递归,但是递归过程中存在大量的重复计算,会超时

2. 迭代

class Solution {
public:
    int climbStairs(int n) {
        assert(n >= 0);
        int prevTwo = 0;
        int prevOne = 1;
        int cur = 1;
        for (int i = 1; i <= n; ++i) {
            prevOne = cur;
            cur = prevOne + prevTwo;
            prevTwo = prevOne;
        }
        return cur;
    }
};

 

3. 直接计算:

斐波那契直接可以计算出表达数出来,且计算方法有好几种:等比数列法、矩阵法、生成函数法

具体见:斐波那契解法

class Solution {
public:
    int climbStairs(int n) {
        assert(n >= 0);
        double s = sqrt(5);
        return floor((pow((1+s)/2, n+1) - pow((1-s)/2, n+1)) / s);
    }
};

 

你可能感兴趣的:(LeetCode)