【R语言学习笔记】 Day9 线性回归及其假设检验

 

1. 目的:构建线性回归模型并检验其假设是否成立。

 

2. 数据来源及背景

2.1 数据来源:数据为本人上课的案例数据,

2.2 数据背景:“玻璃制造公司”主要向新建筑承包商和汽车公司供应产品。该公司认为,他们的年销售额应与新建筑数量以及汽车生产高度相关,因此希望构建线性回归模型来预测其销售额。

 

glass <- read.csv("glass_mult.csv",header=T)
glass
summary(glass)

  

【R语言学习笔记】 Day9 线性回归及其假设检验_第1张图片

 

 

3. 应用

 

3.1 模型构建

查看变量之间相关性,发现自变量BLDG与因变量SALES存在高达0.948的正相关性。

# explore the correlation between variables
cor(glass)

 

【R语言学习笔记】 Day9 线性回归及其假设检验_第2张图片

 

 绘制任意两个变量之间散点图来探索其相关关系。

# get all scatter plots between 2 variables
library(ggplot2)
library(GGally)
ggpairs(glass)
## alternative
## pairs( ~ SALES + BLDG + AUTO, data = glass)

 

【R语言学习笔记】 Day9 线性回归及其假设检验_第3张图片

 

 

由于BLDG与SALES高度相关,故先构建二者之间的一元线性回归模型。

# build linear regression model 1
glass.lm1 <- lm(SALES ~ BLDG, data=glass)
summary(glass.lm1)
anova(glass.lm1)

 

根据模型结果,BLDG高度显著,且R-squared为0.8993,Adjusted R-squared为0.8926,说明该模型解释了将近90%的variance。

【R语言学习笔记】 Day9 线性回归及其假设检验_第4张图片

 

绘制BLDG与SALES的散点图,回归曲线,以及置信区间。

# plot the model as well as the real data
ggplot(glass, aes(x = BLDG, y = SALES)) + geom_point() + geom_smooth(method = 'lm')
# alternative
## plot(glass$BLDG, glass$SALES)
## abline(glass.lm1)

 

【R语言学习笔记】 Day9 线性回归及其假设检验_第5张图片

 

 

接下来,构建BLDG与AUTO的SALES模型。

# build linear regression model 2
glass.lm2 <- lm(SALES ~ BLDG+AUTO, data=glass)
summary(glass.lm2)
anova(glass.lm2)

 

根据模型结果,两个自变量均高度显著,且R-squred及Adjusted R-squred分别提高至0.9446和0.939。

【R语言学习笔记】 Day9 线性回归及其假设检验_第6张图片

 

 

探索模型二是否在模型一的基础上具有显著的提升。由于P-value小于0.05,我们可以认为模型二与模型一相比有显著提升。

# check model improvement
anova(glass.lm1, glass.lm2) # significant  p-value means significant improvement

 

【R语言学习笔记】 Day9 线性回归及其假设检验_第7张图片

 

基于已有数据,运用模型二对其进行预测,并绘制真实值与预测值的散点图来观察预测准确性。

# model prediction
glass$lm2.pred <- predict(glass.lm2)
# compare the model prediction and the real data points
ggplot(glass, aes(x = lm2.pred, y = SALES)) + geom_point() + geom_abline()

  

【R语言学习笔记】 Day9 线性回归及其假设检验_第8张图片

 

 

 

3.2 检验模型是否符合线性回归的假设

假设1: 自变量之间是独立的 (independence)

该假设可以通过3.1中探索变量之间的相关性来验证。若自变量之间的相关性小于0.7,则可认为符合假设。

 

假设2:自变量与因变量之间为线性/可加性的关系 (linearity)

该假设可以通过绘制散点图来判断

 

假设3:残差符合正态分布 (normality)

# test for normality
hist(glass.lm2$residuals, main = 'Histogram of Residual') qqnorm(glass.lm2$residuals) qqline(glass.lm2$residuals)

# alternative
## dat1 <- as.data.frame(glass.lm2$residuals)
## names(dat1) <- 'res'
## theme_set(
## theme_minimal() +
## theme(legend.position = "top"))
## ggplot(dat1,aes(sample = res)) + stat_qq()

【R语言学习笔记】 Day9 线性回归及其假设检验_第9张图片

 

# Shapiro–Wilk test
# H0: 样本数据与正态分布没有显著区别。
# HA: 样本数据与正态分布存在显著区别。
shapiro.test(glass.lm2$residuals)

 

【R语言学习笔记】 Day9 线性回归及其假设检验_第10张图片

 

 

# roughly achieve qqplot by hand 
par(mfrow=c(1,1))
t <- rank(glass.lm2$residuals)/length(glass.lm2$residuals) #求观察累积概率
q <- qnorm(t) #用累积概率求分位数值
plot(q,glass.lm2$residuals)

 

【R语言学习笔记】 Day9 线性回归及其假设检验_第11张图片

 

 

假设4:残差满足同方差性 (homoscedasticity)

# test for homoscedasticity
par(mfrow=c(1,2))
plot(glass.lm2$fitted.values, glass.lm2$residuals)
zres <- rstandard(glass.lm2)
plot(glass.lm2$fitted.values, zres)

 

【R语言学习笔记】 Day9 线性回归及其假设检验_第12张图片

 

 

假设5: 残差满足独立性 (independence)

# test for independence
par(mfrow=c(1,1))
data <- data.frame(YEAR=c(1:17))
newglassdata <- cbind(glass,data)
#newglassdata
plot(newglassdata$YEAR, glass.lm2$residuals)

 

【R语言学习笔记】 Day9 线性回归及其假设检验_第13张图片

 

 

# check model assumption in one step
library(ggfortify)
autoplot(glass.lm2)
# alternative
# par(mfrow = c(2,2))
# plot(glass.lm2)

 

【R语言学习笔记】 Day9 线性回归及其假设检验_第14张图片

 

 

 

  

你可能感兴趣的:(【R语言学习笔记】 Day9 线性回归及其假设检验)