- ModuleNotFoundError: No module named ‘timm.layers‘
忽略不计,
BUGpythonYOLO目标检测人工智能深度学习
解决方式:把fromtimm.layersimportDropPath这个修改为fromtimm.models.layersimportDropPath即可。
- docker Pulling fs layer 含义
潇锐killer
eurekajavaspringcloud
在使用Docker时,当你执行dockerpull命令来获取一个新的镜像,控制台输出中可能会出现"Pullingfslayer"的信息。这是Docker拉取镜像过程中的一个步骤,下面是对这一过程的解释:Docker镜像是由一系列的层(layers)组成的。每个层代表了镜像构建过程中的一个步骤,比如安装一个软件包或复制一些文件。这种层式结构使得Docker镜像既轻便又高效,因为它允许多个镜像共享相同
- TypeError: __init__() got an unexpected keyword argument ‘name‘
PinkAir
debugpythonleetcode
WhenIwroteacustomclassofKeras,Imetthiserror.Solution:changefromthesnippetbelowclasscustconv2d(keras.layers.Layer):def__init__(self):super(custconv2d,self).__init__()self.k=self.add_weight(shape=(1,),i
- 【PyTorch】常用网络层layers总结
遥感小萌新
python深度学习pytorch人工智能python深度学习
文章目录前言一、ConvolutionLayers二、PoolingLayers三、PaddingLayers总结前言PyTorch中网络搭建主要是通过调用layers实现的,这篇文章总结了putorch中最常用的几个网络层接口及其参数。一、ConvolutionLayerspytorch官方文档介绍了众多卷积层算法,以最新的pytorch2.4为例,针对处理的数据维度不同,有如下卷积层layer
- 深度学习与遗传算法的碰撞——利用遗传算法优化深度学习网络结构(详解与实现)
2401_84003733
程序员深度学习人工智能
self.model.add(layers.Dense(10,activation=‘relu’))self.model.build(input_shape=(4,28*28))self.model.summary()self.model.compile(optimizer=optimizers.Adam(lr=0.01),loss=losses.CategoricalCrossentropy(f
- Tensorflow2.16中的Keras包含哪些层(layers)?层的功能及参数详细解释 -- TensorFlow自学笔记6
青瓷看世界
tensorflowtensorflowkeras人工智能
在Keras中,层(Layer)是构建神经网络的基本组件。Keras提供了多种类型的层,用于处理不同类型的输入数据和执行特定的数学操作。英文版可参考TensorFlow官方文档:Module:tf.keras.layers|TensorFlowv2.16.1一.层的分类1.基本网络层1.1.Dense层用于执行全连接操作;1.2.卷积层Conv1D、Conv2D、Conv3D层,用于执行一维、
- 3.关于Detr
安逸sgr
Transformer计算机视觉目标检测transformer
关于Detr模型架构总体架构classTransformer(nn.Module):def__init__(self,d_model=512,nhead=8,num_encoder_layers=6,num_decoder_layers=6,dim_feedforward=2048,dropout=0.1,activation="relu",normalize_before=False,retur
- arcgis js api加载4490服务,以basetilelayer方式
gislaozhang
JSarcgisjavascript开发语言
以basetilelayer加载切片服务html,body,#viewDiv{padding:0;margin:0;height:100%;width:100%;}require(["esri/Map","esri/views/SceneView","esri/layers/BaseTileLayer","esri/layers/support/TileInfo","esri/geometry/S
- Python-scapy库
一只新蘑菇
pythonpython开发语言
1.pip安装scapy库2.相关函数-Ether()链路层、IP()网络层、TCP()传输层使用ls()函数查看对应三个函数的参数代码:fromscapy.layers.inetimport*fromscapy.allimport*pkE=Ether()pkI=IP()pkT=TCP()print("----------------------")ls(pkE)print("----------
- Android下SF合成流程重学习之GPU合成
IT先森
Androidgraphic深入分析androidGPU合成SurfaceFlinger纹理
Android下SF合成流程重学习之GPU合成引言SurfaceFlinger中的图层选择GPU合成(CLIENT合成方式)时,会把待合成的图层Layers通过renderengine(SkiaGLRenderEngine)绘制到一块GraphicBuffer中,然后把这块GraphicBuffer图形缓存通过调用setClientTarget传递给HWC模块,HWC进一步处理后把这个Gr
- LSTM参数详解
实名吃香菜
深度学习lstm人工智能rnn
LSTM(长短期记忆网络)是一种特殊类型的循环神经网络(RNN),主要用于处理和预测序列数据的重要模型。以下是LSTM的主要参数及其含义(前两个参数必填):input_size:输入特征的维度,即每个时间步输入张量的大小。hidden_size:隐藏层的特征数量。它定义了LSTM单元输出的特征的维度。num_layers:LSTM堆叠的层数。多层LSTM可以增加模型的复杂度和能力。bias:如果为
- 猫头虎分享已解决Bug || ImportError: cannot import name ‘relu‘ from ‘keras.layers‘
猫头虎-人工智能
已解决的Bug专栏人工智能bugtensorflow人工智能neo4j深度学习数据挖掘神经网络
博主猫头虎的技术世界欢迎来到猫头虎的博客—探索技术的无限可能!专栏链接:精选专栏:《面试题大全》—面试准备的宝典!《IDEA开发秘籍》—提升你的IDEA技能!《100天精通鸿蒙》—从Web/安卓到鸿蒙大师!《100天精通Golang(基础入门篇)》—踏入Go语言世界的第一步!《100天精通Go语言(精品VIP版)》—踏入Go语言世界的第二步!领域矩阵:猫头虎技术领域矩阵:深入探索各技术领域,发现知
- 8.4循环神经网络样例应用
醉乡梦浮生
sin函数#-*coding:utf-8-*-importnumpyasnpimporttensorflowastf#importmatplotlibasmplfrommatplotlibimportpyplotaspltHIDDEN_SIZE=30#LSTM中隐藏节点的个数。NUM_LAYERS=2#LSTM的层数。TIMESTEPS=10#循环神经网络的训练序列长度。TRAINING_STEP
- Layers » 嵌入层 Embedding
miskid
Docs»Layers»嵌入层EmbeddingEditonGitHub[source]Embeddingkeras.layers.Embedding(input_dim,output_dim,embeddings_initializer='uniform',embeddings_regularizer=None,activity_regularizer=None,embeddings_const
- 吉田亚纪子 LAYERS森罗万象 独立10周年纪念演唱会 lights and shadows 2018 JPN 1080P Bluray《BDMV 22.7G》
shuzicn
英文片名:KOKIALAYERSlightsandshadows中文片名:吉田亚纪子LAYERS森罗万象独立10周年纪念演唱会(2016)类型:音乐地区:日本文件大小:22.77GB,蓝光原盘1080p文件格式:BDMV/AVC音轨:日语LPCM2.0字幕:无字幕2016年に行われた音楽と映像、光と影、ダンスの融合というステージの総合演出をKOKIAが手がけた多重録音物の音世界でおくる、ファンタジ
- keras 池化层
与AI零距离
池化层又称下采样,是对卷积层的降维处理,常用的池化有最大池化、平均池化。MaxPooling1D一维数据上的池化操作keras.layers.MaxPooling1D(pool_size=2,strides=None,padding='valid')pool_size:池化层窗口大小strides:窗口移动步长padding:valid表示不填充特征边界,same表示填充输入特征以使与原始输入长度
- 浏览器layers和css层级上下文,浏览器渲染合成和优化
sasaraku.
前端css
题目取得很大,实际上我还没读懂一些文章,先把笔记记在这里,希望以后能慢慢搞懂这个问题,再持续补充文档。从一个css样式引发的思考。前几天,遇到了一个问题:某一个divA使用了transform样式,导致另一个divB中fixed属性失效,fixeddivB直接形成了absolute的效果,而它的参照父级变成了A。查找资料https://www.zhangxinxu.com/wordpress/20
- 一个用于验证在GPU上训练模型比在CPU上快的代码||TensorFlow||神经网络
@Duang~
机器学习tensorflow人工智能python
importtimeimporttensorflowastffromkerasimportlayers#创建一个大规模模型model=tf.keras.Sequential()model.add(layers.Dense(1000,activation='relu',input_shape=(10000,)))model.add(layers.Dropout(0.5))model.add(laye
- 基于CNN+LSTM深度学习网络的时间序列预测matlab仿真
简简单单做算法
MATLAB算法开发#深度学习深度学习cnnlstmCNN+LSTM深度学习网络时间序列预测
目录1.算法运行效果图预览2.算法运行软件版本3.部分核心程序4.算法理论概述4.1卷积神经网络(CNN)4.2长短时记忆网络(LSTM)4.3CNN+LSTM网络结构5.算法完整程序工程1.算法运行效果图预览2.算法运行软件版本MATLAB2022a3.部分核心程序functionlayers=func_CNN_LSTM_layer(Nfeat,Nfilter,Nout)layers=[%输入特
- 基于CNN卷积网络的MNIST手写数字识别matlab仿真,CNN编程实现不使用matlab工具箱
简简单单做算法
MATLAB算法开发#深度学习cnnmatlab人工智能CNN卷积网络MNIST手写数字识别matlab仿真
目录1.算法运行效果图预览2.算法运行软件版本3.部分核心程序4.算法理论概述4.1卷积神经网络(CNN)4.2损失函数和优化5.算法完整程序工程1.算法运行效果图预览2.算法运行软件版本matlab2022a3.部分核心程序...............................................................%输入图片input_layers=reshap
- (超详细)9-YOLOV5改进-添加EffectiveSEModule注意力机制
我要变胖哇
yolov5改进YOLO深度学习机器学习
1、在yolov5/models下面新建一个EffectiveSEModule.py文件,在里面放入下面的代码代码如下:importtorchfromtorchimportnnasnnfromtimm.models.layers.create_actimportcreate_act_layerclassEffectiveSEModule(nn.Module):def__init__(self,ch
- CNN应用Keras Tuner寻找最佳Hidden Layers层数和神经元数量
取名真难.
机器学习cnnkeras人工智能python深度学习神经网络
介绍:KerasTuner是一种用于优化Keras模型超参数的开源Python库。它允许您通过自动化搜索算法来寻找最佳的超参数组合,以提高模型的性能。KerasTuner提供了一系列内置的超参数搜索算法,如随机搜索、网格搜索、贝叶斯优化等。它还支持自定义搜索空间和搜索算法。通过使用KerasTuner,您可以更轻松地优化模型的性能,节省调参的时间和精力。数据:fromtensorflow.kera
- 全面探索 TensorFlow 中的 tf.keras.layers.RNN 类及其在循环神经网络中的应用
程序员Chino的日记
tensorflowkerasrnn
tf.keras.layers.RNN类在TensorFlow中是实现循环神经网络(RNN)的一种灵活且强大的方式。这个类允许在神经网络模型中构建和操作RNN层,提供多种选项以满足特定需求。以下是对tf.keras.layers.RNN类的主要特性、功能和用法的详细说明:概览基类:继承自TensorFlow的Layer和Module类,是TensorFlow高级KerasAPI的一部分。功能:主要
- 如何解决caffe和video-caffe不能使用cudnn8编译的问题
Arnold-FY-Chen
video-caffe深度学习Caffevideo-caffecaffe深度学习cudnn8cudnn
因为caffe之类的代码很久不更新了,只支持到了使用cudnn7.x,在使用了cudnn8的环境下编译caffe或video-caffe时,会在src/caffe/layers/cudnn_conv_layer.cpp等文件里出错:error:identifier"CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT"isundefinederror:iden
- tf特征处理常用函数
frostjsy
tensorflow人工智能python
1、特征拼接1.1、将特征在最后一个维度进行拼接#将特征按照最后一个维度进行拼接defconcat_fun(inputs,axis=-1):iflen(inputs)==1:returninputs[0]else:#returntf.keras.layers.Concatenate(axis=axis)(inputs)returntf.concat(inputs,axis=axis)eg:a=[a
- Qwen-1.8B 模型的架构细节
andeyeluguo
AI笔记人工智能
+解释ThedetailsofthemodelarchitectureofQwen-1.8Barelistedasfollows:|Hyperparameter|Value||:----------------|:-------||n_layers|24||n_heads|16||d_model|2048||vocabsize|151851||sequencelength|8192|+Qwen-1
- Keras学习笔记3——keras.layers
winter_python
python
目录0.函数1.全连接层2.激活层3.Dropout层4.Flatten层5.Reshape层6.卷积层Conv2DLocallyConnected2D7.池化层8.循环层RNNSimpleRNNGRULSTMConvLSTM2DSimpleRNNCellGRUCellLSTMCellCuDNNGRUCuDNNLSTM9.嵌入层10.融合层MergeAddSubtractMultiplyAvera
- python运行报错_AttributeError: module ‘tensorflow‘ has no attribute ‘contrib‘
阿罗的小小仓库
代码调试过程中遇到的问题python开发语言
问题描述:File"/data/Code/resnet.py",line23,ininitializer=tf.contrib.layers.xavier_initializer_conv2d()AttributeError:module'tensorflow'hasnoattribute'contrib'问题分析:这个错误是因为代码中使用了TensorFlow1.x的风格,而在TensorFlo
- 详解Keras3.0 Layer API: Base RNN layer
缘起性空、
rnn深度学习神经网络keras
RNNlayerkeras.layers.RNN(cell,return_sequences=False,return_state=False,go_backwards=False,stateful=False,unroll=False,zero_output_for_mask=False,**kwargs)参数说明cell:这是循环神经网络的单元类型,可以是LSTM、GRU等。它定义了循环神经网
- Serializable与dataclasses结合的作用
Takoony
开发语言python
一、问题来源:dataclasses和Serializable分别有什么用在研究mistral代码(地址:https://github.com/mistralai/mistral-src/blob/main/mistral/model.py)发现如下问题:@dataclassclassModelArgs(Serializable):dim:intn_layers:inthead_dim:inthi
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓