kNN.py源码及注释(python3.x)

import numpy as np
import operator
from os import listdir
def CerateDataSet():
   
    group = np.array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
    labels = ['A','A','B','B']
    return group,labels
def classify0(inX,dataSet,labels,k):                                             #inX是用于分类的输入向量
    dataSetSize = dataSet.shape[0]                                             #输入的训练样本集是dataSet,标签向量为labels
    diffMat = np.tile(inX,(dataSetSize,1)) - dataSet                       #最后的参数k表示用于选择最近邻居的数目,其中标签向量的元素数目和矩阵dataSet的行数相同。
    sqDiffMat = diffMat**2
    sqDistances = sqDiffMat.sum(axis=1)
    distances = sqDistances**0.5
    sortedDistIndicies = distances.argsort()
    classCount={}
    for i in range(k):
        voteIlabel = labels[sortedDistIndicies[i]]
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
        sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
    return sortedClassCount[0][0]
def file2matrix(filename):                                                             #将文本记录转换Numpy的解析程序
    fr = open(filename)                                                                   #1.打开文件读取文件行数
    arrayOLines = fr.readlines()
    numberOfLines = len(arrayOLines)
    returnMat = np.zeros((numberOfLines,3))                               #创建返回numpy的矩阵
    classLabelVector = []
    index = 0
    for line in arrayOLines:                                                             #解析文件数据到列表
        line = line.strip()                                                                   #这一步将‘\\n'(空行)转换为'',截取掉所有的回车字符
        listFromLine = line.split('\t')                                                  #然后使用tab字符\t将上一步得到的整行数据分割成一个元素列表
        returnMat[index,:] = listFromLine[0:3]
        classLabelVector.append(int(listFromLine[-1]))
        index += 1
    return returnMat,classLabelVector 
 
def autoNorm(dataSet):                                                                #这个步骤是因为海伦希望三个因素对约会系数计算相等,将数字特征转化为0到1区间
    minVals = dataSet.min(0)                                                         #将每列的最小值放在minVals中
    maxVals = dataSet.max(0)                                                       #将每列的最大值放在minVals中
    ranges = maxVals - minVals                                                     #计算范围
    normDataSet = np.zeros(np.shape(dataSet))   #创建矩阵
    m = dataSet.shape[0]
    normDataSet = dataSet -np.tile(minVals,(m,1))                       #numpy中的tile()函数将变量内容复制成输入矩阵同样大小的矩阵
    normDataSet = normDataSet/np.tile(ranges,(m,1))                 #注意这是具体特征值相除
    return normDataSet, ranges, minVals
def datingClassTest():                                                                  #为了测试分类器的工作效率
    hoRatio = 0.10                                                                         #测试数据所占据比重
    datingDataMat,datingLabels = file2matrix('C:\\Users\\dzy520\\Desktop\\datingTestSet2.txt')
    normMat,ranges,minVals = autoNorm(datingDataMat)
    m = normMat.shape[0]
    numTestVecs = int(m*hoRatio)                                                #计算那些用于训练样本那些用于测试
    errorCount = 0.0
    for i in range(numTestVecs):
        classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],\
                                     datingLabels[numTestVecs:m],3)
        print ("the classifier came back with:%d,the real answer is:%d" %(classifierResult,datingLabels[i]))
        if(classifierResult !=datingLabels[i]):errorCount+=1.0
    print("the total error rate is:%f" %(errorCount/float(numTestVecs)))
   
def classifyPerson():                                                                                                                               #约会网站预测函数,即输入网上的数值测试符合海伦对象的函数
    resultList = ['not at all','in small doses','in large doses']                                                                      #三种情况,不喜欢,一般,喜欢
    percentTats = float(input("percentage oftime spent playing video games?"))                                    #输入玩游戏的占比
    ffMiles = float(input("frequent flier miles earned per year?"))                                                             #输入旅行距离的占比
    iceCream = float(input("liters of ice cream consumed per year?"))                                                    #输入吃冰激凌的数量  
    datingDataMat,datingLabels = file2matrix('C:\\Users\\dzy520\\Desktop\\datingTestSet2.txt')              
    normMat,ranges,minVals = autoNorm(datingDataMat)
    inArr = np.array([ffMiles,percentTats,iceCream])                                                                                #将上面三个数据整合成numpy数组
    classifierResult = classify0((inArr-minVals)/ranges,normMat,datingLabels,3)                                    #计算是否符合
    print("You will probably like this person:",resultList[classifierResult - 1]) 
 
   
    #接下来的是手写识别系统
def img2vector(filename):                                                                                                                       #此函数是为了把图像格式化处理为一个向量。把一个32*32的矩阵转化为1*1024的向量
    returnVect = np.zeros((1,1024))
    fr = open(filename)
    for i in range(32):
        lineStr = fr.readline()                                                                                                                       #读取每一行
        for j in range(32):                                                                                                                            #读取每一行的每个数据
            returnVect[0,32*i+j] = int(lineStr[j])                                                                                             #将0或者1赋上去
    return returnVect
def handwritingClassTest():
    hwLabels = []                                                                                                                                      #标签空列表
    trainingFileList = listdir(r'C:\Users\dzy520\Desktop\machinelearninginaction\Ch02\trainingDigits')
    m = len(trainingFileList)
    trainingMat = np.zeros((m,1024))                                                                                                        #创建m行1024列训练矩阵,每行数据存储一个图像
    for i in range(m):
        fileNameStr = trainingFileList[i]                                                                                                        #获取标签,也就是获取这个数字是几   
        fileStr = fileNameStr.split('.')[0]                                                                                                        #对文件名进行分割。就是2_45.txt,从 . 那个地方开始分割文件名,就得到2_45和txt两部分,[0]是取前面部分
        classNumStr = int(fileStr.split('_')[0])                                                                                               #再对上步骤处理好的前面部分再从 _ 这里分割,取前面数字
        hwLabels.append(classNumStr) 
        trainingMat[i,:] = img2vector(r'C:\Users\dzy520\Desktop\machinelearninginaction\Ch02\trainingDigits/%s' %fileNameStr)     #将fileNameStr所对应的数据写到trainingMat这个矩阵的第i行
    testFileList = listdir(r'C:\Users\dzy520\Desktop\machinelearninginaction\Ch02\testDigits')
    errorCount = 0.0                                                                                                                                                                             #初始化错误率为0
    mTest = len(testFileList)
    for i in range(mTest):
        fileNameStr = testFileList[i]
        fileStr = fileNameStr.split('.')[0]                                                                                                        #对测试数据进行分割
        classNumStr = int(fileStr.split('_')[0])
        vectorUnderTest = img2vector(r'C:\Users\dzy520\Desktop\machinelearninginaction\Ch02\testDigits/%s' %fileNameStr)
        classifierResult = classify0(vectorUnderTest, trainingMat,hwLabels,3)                                          #由于数据已经是0到1之间所以不需要用上面的autoNorm函数,这个步骤是为了,计算找到最相近的3个即最                                                                                                                                                                   开始函数的原理返回发生最多的标签
        print("the classifier came back with:%d,the real answer is %d" %(classifierResult,classNumStr))  
        if (classifierResult != classNumStr):
                errorCount += 1.0
    print("\nthe total number of errors is:%d"%errorCount)
    print("\nthe total error rate is: %f"%(errorCount/float(mTest))) 
 
 
温馨提示:这里文件的路径是我机器上的,大家注意路径名,奥利给!
  以上所需文件大家自行下载,嘿嘿嘿~~

你可能感兴趣的:(kNN.py源码及注释(python3.x))