深入分析Android消息机制工作过程--Handler,Looper,MessageQueue

0.前言

深入分析Android消息机制工作过程--Handler,Looper,MessageQueue_第1张图片
image.png

Handler,Looper,MessageQueue三者配合共同完成Android的消息机制,每个线程都有自己的消息队列。消息机制是进程起来就会从android.app.ActivityThread#main方法为main主线程创建一个MessageQueue消息队列并通过Looper#loop方法进入不断从消息队列获取消息的过程。所以子线程需要自己添加一个线程队列。

1.Handler,MessageQueue,Looper三角关系

Handler:负责生产消息,接收消息。将消息post到消息队列MessageQueue中去。
Looper:负责循环从MessageQueue消息队列中获取消息,然后通过Handler分发消息出去各自处理。
MessageQueue:当前线程的消息队列,用于接受Handler post过来的消息,存储消息。

2.Handler工作过程分析

以下代码我们平时开发过程中应该非常熟悉,我们就从这里分析。

new Handler().post(new Runnable() {
            @Override
            public void run() {
                
            }
        });

首先我们从Handler post/postDelayed方法分析,具体这两个方法仅仅从消息池中获取一个消息实体,然后将Runnable类型r赋值给callback,用于后面回调。方法如下:

public final boolean post(Runnable r)
    {
       return  sendMessageDelayed(getPostMessage(r), 0);
    }

public final boolean postDelayed(Runnable r, long delayMillis)
    {
        return sendMessageDelayed(getPostMessage(r), delayMillis);
    }

我们可以看到post/postDelayed方法最终都是调用sendMessageDelayed方法。

public final boolean sendMessageDelayed(Message msg, long delayMillis)
    {
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }

public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }

private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }

通过以上代码queue.enqueueMessage(msg, uptimeMillis)可以看出,其实就是将一个消息加入到消息队列MessageQueue中。接下来我们继续跟进MessageQueue#enqueueMessage方法。

3.MessageQueue工作过程分析

首页我们看看MessageQueue这个消息队列是什么时候创建的。在这里我们大家平时开发过程中很少说到android程序的入口,学过C语言的同学应该知道程序的入口就是main方法,那android是不是也用main方法呢?同样也有,位于ActivityThread中main方法(android.app.ActivityThread#main)

public static void main(String[] args) {
     。
     。
     。
        Looper.prepareMainLooper();

        ActivityThread thread = new ActivityThread();
        thread.attach(false);

        if (sMainThreadHandler == null) {
            sMainThreadHandler = thread.getHandler();
        }

        AsyncTask.init();

        if (false) {
            Looper.myLooper().setMessageLogging(new
                    LogPrinter(Log.DEBUG, "ActivityThread"));
        }

        Looper.loop();

        throw new RuntimeException("Main thread loop unexpectedly exited");
    }

以上我们看到Looper#prepareMainLooper方法

public static void prepareMainLooper() {
        prepare(false);
        synchronized (Looper.class) {
            if (sMainLooper != null) {
                throw new IllegalStateException("The main Looper has already been prepared.");
            }
            sMainLooper = myLooper();
        }
    }

再跟进prepare方法如下:

private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }

我们看到sThreadLocal.set(new Looper(quitAllowed)),Looper构造方法如下:

private Looper(boolean quitAllowed) {
        mQueue = new MessageQueue(quitAllowed);
        mThread = Thread.currentThread();
    }

没错就是这里。然后我们跟进到Looper构造方法中,我们看到,原理MessageQueue是在Looper中初始化的。在这里我们看到sThreadLocal对象引用,这个其实就是一个本地变量副本,跟进ThreadLocal.set(new Looper(quitAllowed))方法你可以看到其实跟线程有关联了。这里就不赘述了。具体看我上篇:ThreadLocal分析。到这里其实我们应该可以知道每个线程都有自己的消息队列。

接着我们看看消息加入队列,源码如下:

boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }

            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

4.Looper工作过程分析

首先我们从上面android.app.ActivityThread#main方法中我们可以看到,通过Looper.prepareMainLooper方法在Looper类中创建一个当前本地线程关联Looper对象并创建一个消息队列。然后通过Looper.loop方法不断的从消息队列中获取消息并通过Handler分发出对应的消息。下面我们重点看看Looper#loop方法:

public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;

        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();

        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }

            msg.target.dispatchMessage(msg);

            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }

            // Make sure that during the course of dispatching the
            // identity of the thread wasn't corrupted.
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }

            msg.recycleUnchecked();
        }
    }

1.通过myLooper获取当前线程的Looper对象。
2.获取的myLooper不为空,这个时候取出Looper构造函数中创建的MessageQueue消息队列。
3.然后进入一个死循环中,通过queue.next取出下一个Message消息,消息为空则直接返回,反之继续执行。
4.通过dispatchMessage方法分发消息出去。这里我们看到是通过msg.target对象分发的,那msg.target是啥东西?我们看回android.os.Handler#enqueueMessage方法:

private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }

将msg.target 赋值为 this,这里我们知道msg.target其实就是一个Handler对象。
5.接着我们继续分析消息分发的过程,通过msg.target.dispatchMessage会调用android.os.Handler#dispatchMessage方法:

public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }

当msg.callback不为空就调用handleCallback方法,msg.callback又是啥呢?我们回忆下android.os.Handler#getPostMessage(java.lang.Runnable)方法:

private static Message getPostMessage(Runnable r) {
        Message m = Message.obtain();
        m.callback = r;
        return m;
    }

msg.callback其实是Handler#post方法的一个Runnable对象。
反之当msg.callback为空,同时mCallback不会空,就通过Callback接口回调到调用的地方,同时直接return。

public Handler(Looper looper, Callback callback) {
        this(looper, callback, false);
    }

通过上面可以看出mCallback是实例化Handler的时候传进来的,则消息就会回调到对应的handleMessage方法中。
到此整个消息机制的过程就分析完了。

That's All

你可能感兴趣的:(深入分析Android消息机制工作过程--Handler,Looper,MessageQueue)