ASCII,GBK,和Unicode的UTF-8,UTF-16,UTF-32阐述

Unicode介绍

Unicode是一张编码表格,包含了世界上每个国家所有的字符对应的二进制数据
ASCII,GBK,和Unicode的UTF-8,UTF-16,UTF-32阐述_第1张图片

计算机只能识别二进制,例如010101001这种二进制数据(计算机使用高低电平表示0和1)。

但是这些二进制人是难以看懂的,于是美国人就用ASCII码制作了一张表,包含了从a,b,c,.....@%$等128个字符,差不多半个字节(1111,1111==256 0111,1111==128),为了以后扩充方便就取了一个字节,最高位是0,就这样将英文字符、字符、数字128个包含进去了,下次计算机的0101二进制代码就直接查这个ASCII表就知道对应的字符。

由于世界上并不是只有美国使用计算机,其他国家的字符都不一样,而且我们中国的汉字几万个,一张表存不完。

于是,中国人就发明了GBK编码表,gbk编码规定,计算机不能每次只读一个字节(8个二进制)那么死板,你要先看看第一位是不是为0,要是为0 的话,就当作ASCII码来读入一个字节,不然的话就读入两个字节(汉字太多一个字节存不下,读入两个字节表示汉字就查GBK)。

那么每个国家一个表,这可就尴尬了,相互通信的时候由于解码方式不同就会导致乱码(用ASCII发邮件,计算机查ASCII表转换成对应0101010二进制,接收的人用GBK解码,将010101取查GBK肯定就查不到啊)。

于是,国际组织就发明了一套公用的表unicode编码,将所有国家,所有字符都收进去了,目前有上百万个字符。

字符集和字符编码的区别

字符集和字符编码不是一个概念,字符集定义了文字和二进制的对应关系,为字符分配了唯一的编号,而字符编码规定了如何将文字的编号存储到内存中。有的字符集在制定时就考虑到了编码的问题,是和编码结合在一起的;有的字符集只管制定字符的编号,至于怎么编码,是其他人的事情。
ASCII,GBK,和Unicode的UTF-8,UTF-16,UTF-32阐述_第2张图片

为什么要严格区分字符集与编码这两个概念?

在早期,字符集与编码是一对一的,但随着时间的发展,出现了一对多的情形。

字符集与编码一对一的情形:

有很多的字符编码方案,一个字符集只有唯一一个编码实现,两者是一一对应的。比如 GB2312,这种情况,无论你怎么去称呼它们,比如“GB2312编码”,“GB2312字符集”,说来说去其实都是一个东西,可能它本身就没有特意去做什么区分,所以无论怎么说都不会错。

字符集与编码一对多的情形:

事情到了Unicode这里,变得不一样了,唯一的Unicode字符集对应了三种编码:UTF-8,UTF-16,UTF-32。如果还是这么笼统地去称呼,就很容易搞混了。

为什么Unicode这么特殊?

人们弄出新的字符集标准,驱动力无外乎是旧的字符集里的字符不够用了。

Unicode 的目标是统一所有的字符集,囊括所有的字符,所以字符集发展到它这里就到头了,再去整什么新的字符集就没必要也不应该了。

但如果觉得它现有的编码方案不太好呢?在不能弄出新的字符集情况下,只能在编码方面做文章了,于是就有了多个实现,这样一来传统的一一对应关系就打破了。

我们严格地区分字符集与编码两个概念,理由就在这里:
指定了编码,它所对应的字符集自然就指定了,编码才是我们最终要关心的。

Unicode早期和现在的对比

ASCII,GBK,和Unicode的UTF-8,UTF-16,UTF-32阐述_第3张图片
由于历史方面的原因,你还会在不少地方看到把 Unicode 和 UTF-8 混在一块的情况,这种情况下的 Unicode 通常就是 UTF-16 或者是更早的 UCS-2 编码。
例如记事本:
ASCII,GBK,和Unicode的UTF-8,UTF-16,UTF-32阐述_第4张图片
由于各种原因,必须承认,在不同的语境下,“Unicode”这个词有着不同的含义。
它可能指:
(1)Unicode 标准
(2)Unicode 字符集
(3)Unicode 的抽象编码(编号),也即码点(code point)
(4)Unicode 的一个具体编码实现,通常即为变长的 UTF-16(16 或 32 位),又或者是更早期的定长 16 位的 UCS-2

如何将字符编号存入内存中

字符集为每个字符分配了一个唯一的编号,通过这个编号就能找到对应的字符。在编程过程中我们经常会使用字符,而使用字符的前提就是把字符放入内存中,毫无疑问,放入内存中的仅仅是字符的编号,而不是真正的字符实体。

这就抛出了一个问题,如何才能将字符编号放入内存中呢?

对于 ASCII 字符集,这很容易。ASCII 总共包含 128 个字符,用 7 个比特位(Bit)恰好能够存储,不过考虑到计算机一般把字节(Byte)作为基本单元,为了操作方便,我们不妨用一个字节(也就是 8 个比特位)来存储 ASCII。这样虽然浪费了一个比特位,但是读写效率提高了。

但是对于 Unicode,问题就没有这么简单了。Unicode 目前已经包含了上百万的字符,位置靠前的字符用一个字节就能存储,位置靠后的字符用三个字节才能存储。我们可以为所有字符都分配三个字节的内存,也可以为编号小的字符分配一个字节或者两个字节的内存,而为编号大的字符分配三个字节的内存。

方案1:为每个字符分配固定长度的内存

一种方案是为每个字符分配固定长度的内存,并且这块内存要足够大,可以容纳下所有的字符编号。这种方案最简单,直接将字符编号放入内存中即可,不需要任何转换,并且以后在字符串中定位字符、修改字符都非常容易。

目前的 Unicode 已经收录了上百万的字符,至少需要三个字节才能容纳下所有的字符编号。假设字符串"A3中¥"的 Unicode 编码值(十六进制形式)分别是 2A、31、DA49、BB672C,那么它们在内存中的存储形式为:

在几乎所有的字符集中,常用字符的编号往往比较小,罕见字符的编号往往比较大,包括 Unicode 在内。

A和3是 ASCII 编码中的字符,Unicode 为了兼容 ASCII,在设计时刻意保留了原来 ASCII 中字符的编号,所以英文字母和阿拉伯数字在 Unicode 中的编号都非常小,用一个字节足以容纳。中是一个汉字,编号比较大,一般要用两个字节才能容纳。¥可以看做是一个极其少见,或者只有极少数地区才会使用到的字符,这样的字符编号往往比较大,有时候需要三个字节才能容纳。

是人民币符号,是汉字文化的一部分,它和其它汉字一样,实际上是用两个字节存储的,不过这里我们为了演示,故意犯错地说它需要三个字节。

上图中带灰色背景的字节是没有用到的字节,它们就是被浪费掉的一部分内存空间,这就是用固定长度的内存来存储字符编号的缺点:常用字符的编号都比较小,这种方案会浪费很多内存空间,对于以英文为主的国家,比如美国、加拿大、英国等,内存利用率甚至会低于 50%。

方案2:为每个字符分配尽量少的内存

既然上面的方案有缺点,那我们就来改进一下。改进的思路也很明确,就是把空闲的内存压缩掉,为每个字符分配尽量少的字节,例如,A和3分配一个字节足以,中分配两个字节足以,如下图所示:

这样虽然没有了空闲字节,不浪费任何内存空间了,但是又出现新的问题了:如果我不告诉你,你怎么知道2A表示一个字符,而不是2A31或者2A31DA才表示一个字符呢?后面的字符也有类似的问题。

对于第一种方案,每个字符占用的字节数是固定的,很容易区分各个字符;而这种方案,不同的字符占用的字节数不同,字符之间也没有特殊的标记,计算机是无法定位字符的。

这种方案还需要改进,必须让不同的字符编码有不同的特征,并且字符处理程序也需要调整,要根据这些特征去识别不同的字符。

要想让不同的字符编码有不同的特征,可以从两个方面下手:

1) 一是从字符集本身下手,在设计字符集时,刻意让不同的字符编号有不同的特征。

例如,对于编号较小的、用一个字节足以容纳的字符,我们就可以规定这个字符编号的最高位(Bit)必须是 0;对于编号较大的、要用两个字节存储的字符,我们就可以规定这个字符编号的高字节的最高位必须是 1,低字节的最高位必须是 0;对于编号更大的、需要三个字节存储的字符,我们就可以规定这个字符编号的所有字节的最高位都必须是 1。

程序在定位字符时,从前往后依次扫描,如果发现当前字节的最高位是 0,那么就把这一个字节作为一个字符编号。如果发现当前字节的最高位是 1,那么就继续往后扫描,如果后续字节的最高位是 0,那么就把这两个字节作为一个字符编号;如果后续字节的最高位是 1,那么就把挨着的三个字节作为一个字符编号。

这种方案的缺点很明显,它会导致字符集不连续,中间留出大量空白区域,这些空白区域不能定义任何字符。

2) 二是从字符编号下手,可以设计一种转换方案,字符编号在存储之前先转换为有特征的、容易定位的编号,读取时再按照相反的过程转换成字符本来的编号。

那么,转换后的编号要具备什么样的特征呢?其实也可以像上面一样,根据字节的最高位是 0 还是 1 来判断字符到底占用了几个字节。

相比第一种方案,这种方案有缺点也有优点:

  • 缺点就是多了转换过程,字符在存储和读取时要经过转换,效率低;
  • 优点就是在制定字符集时不用考虑存储的问题,可以任意排布字符。

Unicode 到底使用哪种编码方案

Unicode 是一个独立的字符集,它并不是和编码绑定的,你可以采用第一种方案,为每个字符分配固定长度的内存,也可以采用第二种方案,为每个字符分配尽量少的内存。

需要注意的是,Unicode 只是一个字符集,在制定的时候并没有考虑编码的问题,所以采用第二种方案时,就不能从字符集本身下手了,只能从字符编号下手,这样在存储和读取时都要进行适当的转换。

Unicode 可以使用的编码有三种,分别是:

  • UFT-8:一种变长的编码方案,使用 1~6 个字节来存储;
  • UFT-32:一种固定长度的编码方案,不管字符编号大小,始终使用 4 个字节来存储;
  • UTF-16:介于 UTF-8 和 UTF-32 之间,使用 2 个或者 4 个字节来存储,长度既固定又可变。

UTF 是 Unicode Transformation Format 的缩写,意思是“Unicode转换格式”,后面的数字表明至少使用多少个比特位(Bit)来存储字符。

UTF-8

UTF-8 的编码规则很简单:如果只有一个字节,那么最高的比特位为 0;如果有多个字节,那么第一个字节从最高位开始,连续有几个比特位的值为 1,就使用几个字节编码,剩下的字节均以 10 开头。

具体的表现形式为:

0xxxxxxx:单字节编码形式,这和 ASCII 编码完全一样,因此 UTF-8 是兼容 ASCII 的;
110xxxxx 10xxxxxx:双字节编码形式;
1110xxxx 10xxxxxx 10xxxxxx:三字节编码形式;
11110xxx 10xxxxxx 10xxxxxx 10xxxxxx:四字节编码形式。

xxx 就用来存储 Unicode 中的字符编号。

下面是一些字符的编码实例(绿色部分表示本来的 Unicode 编号):

ASCII,GBK,和Unicode的UTF-8,UTF-16,UTF-32阐述_第5张图片

UTF-32

UTF-32 是固定长度的编码,始终占用 4 个字节,足以容纳所有的 Unicode 字符,所以直接存储 Unicode 编号即可,不需要任何编码转换。浪费了空间,提高了效率。

UTF-16

UFT-16 比较奇葩,它使用 2 个或者 4 个字节来存储。

对于 Unicode 编号范围在 0 ~ FFFF 之间的字符,UTF-16 使用两个字节存储,并且直接存储 Unicode 编号,不用进行编码转换,这跟 UTF-32 非常类似。

对于 Unicode 编号范围在 10000~10FFFF 之间的字符,UTF-16 使用四个字节存储,具体来说就是:将字符编号的所有比特位分成两部分,较高的一些比特位用一个值介于 D800~DBFF 之间的双字节存储,较低的一些比特位(剩下的比特位)用一个值介于 DC00~DFFF 之间的双字节存储。

如果你不理解什么意思,请看下面的表格:
ASCII,GBK,和Unicode的UTF-8,UTF-16,UTF-32阐述_第6张图片

位于 D800~0xDFFF 之间的 Unicode 编码是特别为四字节的 UTF-16 编码预留的,所以不应该在这个范围内指定任何字符。如果你真的去查看 Unicode 字符集,会发现这个区间内确实没有收录任何字符。

UTF-16 要求在制定 Unicode 字符集时必须考虑到编码问题,所以真正的 Unicode 字符集也不是随意编排字符的。

总结

只有 UTF-8 兼容 ASCII,UTF-32 和 UTF-16 都不兼容 ASCII,因为它们没有单字节编码。

GB2312、Shift-JIS 等国家(地区)字符集怎么编码

GB2312、GBK、Shift-JIS 等特定国家的字符集都是在 ASCII 的基础上发展起来的,它们都兼容 ASCII,所以只能采用变长的编码方案:用一个字节存储 ASCII 字符,用多个字节存储本国字符。

以 GB2312 为例,该字符集收录的字符较少,所以使用 1~2 个字节编码。

  • 对于 ASCII 字符,使用一个字节存储,并且该字节的最高位是 0;
  • 对于中国的字符,使用两个字节存储,并且规定每个字节的最高位都是 1。

由于单字节和双字节的最高位不一样,所以很容易区分一个字符到底用了几个字节。

宽字符和窄字符(多字节字符)

有的编码方式采用 1~n 个字节存储,是变长的,例如 UTF-8、GB2312、GBK 等;如果一个字符使用了这种编码方式,我们就将它称为多字节字符,或者窄字符。

有的编码方式是固定长度的,不管字符编号大小,始终采用 n 个字节存储,例如 UTF-32、UTF-16 等;如果一个字符使用了这种编码方式,我们就将它称为宽字符。

Unicode 字符集可以使用窄字符的方式存储,也可以使用宽字符的方式存储;GB2312、GBK、Shift-JIS 等国家编码一般都使用窄字符的方式存储;ASCII 只有一个字节,无所谓窄字符和宽字符。

不同的编码优缺点比较

使用ASCII存储数据,占用一个字节,只能存储英文和数字等128个字符

使用GBK字符集存储数据,占用2个字节,包容ASCII码和中文字符

使用Unicode字符集存储数据,包含世界上所有的字符,目前已经收录了上百万个字符,所以存储数据的方式分为两种:

  • 直接存储,浪费资源,但效率高
  • 根据编码方式进行存储,对Unicode编码进行再编码
    • UTF-8占用1到6个字节
    • UTF-32占用4个字节
    • UTF-16占用2个或4个字节

现在的计算机采用的编码

内存中使用的是unicode编码格式,提高效率
硬盘中存储的是UTF-8,节省空间

延伸

用数字信号完成对数字量进行算数运算和逻辑运算的电路称为数字电路,或者数字系统。由于它具有逻辑运算和逻辑处理功能,所以又称数字逻辑电路。

计算机既可以进行数值计算,又可以进行逻辑计算的,这另种计算主要靠CPU来完成,而CPU中重要的负责进行执行运算的部分叫做算数逻辑单元。它就是由数字电路的逻辑门构成的。

逻辑门是数字逻辑电路的基本单元,通过控制高,低电平(分别代表逻辑上的“真”与“假”或二进制中的“1”和“0”),从而实现逻辑运算。

......

延伸文章链接:https://www.cnblogs.com/cnhyk/p/12283585.html

你可能感兴趣的:(ASCII,GBK,和Unicode的UTF-8,UTF-16,UTF-32阐述)