MapReduce之简单的数据清洗----课堂测试

题目:

Result文件数据说明:

Ip:106.39.41.166,(城市)

Date:10/Nov/2016:00:01:02 +0800,(日期)

Day:10,(天数)

Traffic: 54 ,(流量)

Type: video,(类型:视频video或文章article)

Id: 8701(视频或者文章的id)

测试要求:

1、 数据清洗:按照进行数据清洗,并将清洗后的数据导入hive数据库中。

两阶段数据清洗:

(1)第一阶段:把需要的信息从原始日志中提取出来

ip:    199.30.25.88

time:  10/Nov/2016:00:01:03 +0800

traffic:  62

文章: article/11325

视频: video/3235

1 2 4 5 6

(2)第二阶段:根据提取出来的信息做精细化操作

ip--->城市 city(IP)

date--> time:2016-11-10 00:01:03

day: 10

traffic:62

type:article/video

id:11325

(3)hive数据库表结构:

create table data(  ip string,  time string , day string, traffic bigint,

type string, id   string )

2、数据处理:

·统计最受欢迎的视频/文章的Top10访问次数 (video/article)

·按照地市统计最受欢迎的Top10课程 (ip)

·按照流量统计最受欢迎的Top10课程 (traffic)

3、数据可视化:将统计结果倒入MySql数据库中,通过图形化展示的方式展现出来。

 

初始文件部分样例:

1.192.25.84 2016-11-10-00:01:14 10 54 video 5551 
1.194.144.222 2016-11-10-00:01:20 10 54 video 3589 
1.194.187.2 2016-11-10-00:01:05 10 54 video 2212 
1.203.177.243 2016-11-10-00:01:18 10 6050 video 7361 
1.203.177.243 2016-11-10-00:01:19 10 72 video 7361 
1.203.177.243 2016-11-10-00:01:22 10 6050 video 7361 
1.30.162.63 2016-11-10-00:01:46 10 54 video 3639 
1.84.205.195 2016-11-10-00:01:12 10 54 video 1412

package Test;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCount{
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Job job = Job.getInstance();
job.setJobName("WordCount");
job.setJarByClass(WordCount.class);
job.setMapperClass(doMapper.class);
job.setReducerClass(doReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
Path in = new Path("hdfs://localhost:9000/user/hadoop/name/result.txt"); 
Path out = new Path("hdfs://localhost:9000/user/hadoop/name/out2"); 
FileInputFormat.addInputPath(job, in); 
FileOutputFormat.setOutputPath(job, out); 
System.exit(job.waitForCompletion(true) ? 0 : 1); 

public static class doMapper extends Mapper
public static final IntWritable one = new IntWritable(1); 
public static Text word = new Text(); 
@Override 
protected void map(Object key, Text value, Context context) 
throws IOException, InterruptedException { 
StringTokenizer tokenizer = new StringTokenizer(value.toString(), ""); 
word.set(tokenizer.nextToken()); 
context.write(word, one); 


public static class doReducer extends Reducer
private IntWritable result = new IntWritable(); 
@Override
protected void reduce(Text key, Iterable values, Context context) 
throws IOException, InterruptedException { 
int sum = 0; 
for (IntWritable value : values) { 
sum += value.get(); 

result.set(sum); 
context.write(key, result); 


}

你可能感兴趣的:(MapReduce之简单的数据清洗----课堂测试)