《Scikit-Learn与TensorFlow机器学习实用指南》第7章 集成学习和随机森林

第7章 集成学习与随机森林

来源:ApacheCN《Sklearn 与 TensorFlow 机器学习实用指南》翻译项目

译者:@friedhelm739

校对:@飞龙

假设你去随机问很多人一个很复杂的问题,然后把它们的答案合并起来。通常情况下你会发现这个合并的答案比一个专家的答案要好。这就叫做群体智慧。同样的,如果你合并了一组分类器的预测(像分类或者回归),你也会得到一个比单一分类器更好的预测结果。这一组分类器就叫做集成;因此,这个技术就叫做集成学习,一个集成学习算法就叫做集成方法。

例如,你可以训练一组决策树分类器,每一个都在一个随机的训练集上。为了去做预测,你必须得到所有单一树的预测值,然后通过投票(例如第六章的练习)来预测类别。例如一种决策树的集成就叫做随机森林,它除了简单之外也是现今存在的最强大的机器学习算法之一。

向我们在第二章讨论的一样,我们会在一个项目快结束的时候使用集成算法,一旦你建立了一些好的分类器,就把他们合并为一个更好的分类器。事实上,在机器学习竞赛中获得胜利的算法经常会包含一些集成方法。

在本章中我们会讨论一下特别著名的集成方法,包括 bagging, boosting, stacking,和其他一些算法。我们也会讨论随机森林。

阅读全文

你可能感兴趣的:(《Scikit-Learn与TensorFlow机器学习实用指南》第7章 集成学习和随机森林)