线段树直接维护区间最大值最小值,修改时直接对最大最小值进行修改
pushdown时将左右儿子的最大最小值卡进父亲的上下界
#include
namespace IO {
void read() {}
template
inline void read(T &x, T2 &... oth) {
x = 0; T f = 1; char ch = getchar();
while (ch < '0' || ch > '9') { if (ch == '-') f = -1; ch = getchar(); }
while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar();
x *= f;
read(oth...);
}
}
const int N = 2e6 + 7;
int n, m;
inline int max(int a, int b) { return a > b ? a : b; }
inline int min(int a, int b) { return a < b ? a : b; }
struct Seg {
#define lp p << 1
#define rp p << 1 | 1
int mx[N << 2], mn[N << 2];
inline void pushup(int p) {
mx[p] = max(mx[lp], mx[rp]);
mn[p] = min(mn[lp], mn[rp]);
}
inline void tag(int p, int f) {
if (mn[f] > mx[p]) mn[p] = mx[p] = mn[f];
else if (mn[f] > mn[p]) mn[p] = mn[f];
if (mx[f] < mn[p]) mn[p] = mx[p] = mx[f];
else if (mx[f] < mx[p]) mx[p] = mx[f];
}
inline void pushdown(int p) {
tag(lp, p);
tag(rp, p);
}
void update(int p, int l, int r, int x, int y, int v, int opt) {
if (x <= l && y >= r) {
if (opt == 1) {
mn[p] = max(mn[p], v);
mx[p] = max(mx[p], v);
} else {
mn[p] = min(mn[p], v);
mx[p] = min(mx[p], v);
}
return;
}
pushdown(p);
int mid = l + r >> 1;
if (x <= mid) update(lp, l, mid, x, y, v, opt);
if (y > mid) update(rp, mid + 1, r, x, y, v, opt);
pushup(p);
}
void print(int p, int l, int r) {
if (l == r) {
//assert(mx[p] == mn[p]);
printf("%d\n", mx[p]);
return;
}
pushdown(p);
int mid = l + r >> 1;
print(lp, l, mid);
print(rp, mid + 1, r);
}
} seg;
int main() {
IO::read(n, m);
for (int opt, l, r, v; m--; ) {
IO::read(opt, l, r, v);
l++, r++;
seg.update(1, 1, n, l, r, v, opt);
}
seg.print(1, 1, n);
return 0;
}