网络训练

1、hard mining

         这个trick来自检测算法DPM论文,解决2个问题:

         1)正、负样本失衡问题。

论文第4节介绍了hardmining的具体方法,顺带介绍了这个问题。“When training a model for object detection we often have a very large number of negative examples (a single image can yield 105 examples for a scanning window classifier). This can make it infeasible to consider all negative examples simultaneously. Instead, it is common to construct training data consisting of the positive in- stances and “hard negative” instances.”

       2)过多的简单样本问题,导致训练效果不理想

这个问题可以从下图svm的超平面去理解,红色的正、负样本最有效,可以让模型学习得到最佳的分解线,而黑色的正负样本就是比较冗余的简单样本,从中抽样一部分数据即可。

网络训练_第1张图片

你可能感兴趣的:(网络训练)