- python卡方检验计算pvalue值_Python数据科学:卡方检验
CodeWhiz
之前已经介绍的变量分析:①相关分析:一个连续变量与一个连续变量间的关系。②双样本t检验:一个二分分类变量与一个连续变量间的关系。③方差分析:一个多分类分类变量与一个连续变量间的关系。本次介绍:卡方检验:一个二分分类变量或多分类分类变量与一个二分分类变量间的关系。如果其中一个变量的分布随着另一个变量的水平不同而发生变化时,那么两个分类变量就有关系。卡方检验并不能展现出两个分类变量相关性的强弱,只能展
- 【Python・统计学】单因素方差分析(简单原理及代码)
TUTO_TUTO
统计学pythonpython学习笔记
前言自学笔记,分享给对统计学原理不太清楚但需要在论文中用到的小伙伴,欢迎大佬们补充或绕道。ps:本文不涉及公式讲解(文科生小白友好体质)~本文重点:单因素方差分析(以下:方差分析)【1.方差分析简单原理和前提条件】【2.方差分析和t检验的区别】【3.方差分析代码(配对/独立+事后检验+效应量)】1.方差分析简单原理方差分析(ANOVA)又称“变异数分析”或“F检验”,是由罗纳德·费雪爵士发明的,用
- Python 数学建模——方差分析
Desire.984
Python数学建模数学建模python概率论
文章目录前言单因素方差分析原理核心代码双因素方差分析数学模型分析依据典型代码前言 方差分析也是概率论中非常重要的内容,有时数学建模需要用到。方差分析是干什么的?如果说假设检验用于分析两个总体之间的均值μ1,μ2\mu_1,\mu_2μ1,μ2是否存在显著的差别,那么方差分析就是分析两个以上总体之间的均值是否存在显著的差别。单因素方差分析用途:已知一个量AAA可能会影响XXX,AAA的不同取值可能
- python可以构建sem模型_结构方程模型(SEM)可用于微生态研究及R语言实现
weixin_39650139
python可以构建sem模型
导读结构方程模型(StructuralEquationModeling,SEM)是一种能基于变量之间的协方差矩阵分析多变量之间结构关系的多元统计分析方法,也被称为协方差结构模型。该方法是因子分析和多元回归分析的结合,可用于分析被测变量与潜在变量之间的结构关系,替代多重回归、通径分析、因子分析、协方差分析等分析方法。结构方程模型能在一次分析中估计多个相互关联的变量之间的依赖关系而受到研究者的青睐。早
- 面向面试的机器学习知识点(2)——数理统计
小井正在努力中
机器学习人工智能
本期省流版:成为数据分析师,这些数理统计知识必不可少!大样本,小样本的概念协方差、相关系数、独立性之间的区别与联系显著性水平/置信度/置信区间假设检验三种经典分布,和对应的三种检验方式方差分析中心极限定理,大数定理内容很多,创作不易,请多多支持~大样本/小样本大样本:样本量趋于无穷小样本:样本量有限协方差/相关系数/独立性协方差定义:两个变量总体的误差,反映两个变量之间的变化趋势(eg.一个上升,
- D32 正交试验难度大?
孤独的坚果儿
今天是周六也正好总结下这这一段时间学习的方差分析知识。其实正交试验最适合生产使用,通过不同的因素分析,得出最优的条件。再者正交试验并非高大上什么难以理解的试验思路,反而正交试验设计给我们一个清晰的思路,用最少的试验设计得出最优的条件。只要是对生产或者测试熟悉的人员都可以采用该项测试。而且他们只要考虑好因素,就可以采用经验进行实验设计。最好是重复测试,可以考虑其检测的精密度。为什么较少的人使用正交呢
- 多个总体均值的比较(多元方差分析)
亦旧sea
均值算法算法
多元方差分析是什么多元方差分析是一种统计方法,用于比较两个或更多组的均值在一个或多个自变量上的差异是否具有统计学意义。它可以同时考虑多个自变量对因变量的影响,以及自变量之间的交互作用。它是广义线性模型的拓展,适用于因变量为连续变量且自变量为分类变量的情况。多元方差分析可以帮助研究者确定各组之间是否存在显著差异,并评估自变量的影响程度。它常用于社会科学、医学研究等领域中。多元方差分析的原理多元方差分
- excel统计分析——多组数据的秩和检验
maizeman126
excel统计分析秩和检验
单因素资料不完全满足方差的基本假定时,可进行数据转换后再进行方差分析,但有时数据转换后仍不满足方差分析的基本假定,就只能进行秩和检验了。多组数据秩和检验的主要方法为Kruskal-Wallis检验,也称为Kruskal-Wallis秩和方差分析或H检验。Kruskal-Wallis不要求总体呈正态分布,但要求总体方差相等,为连续总体,各组效应相互独立,所有样本来自随机抽样,利用秩和来推断样本所在总
- ggplot2:方差分析多重比较标注显著字母
周运来就是我
赖江山老师在科学网分享了FrancoisGillet编写的两个方差分析多重比较的函数boxplert()和boxplerk()【来源NumericalEcologywithR(secondEdition)】我看了一下出图的部分是用boxplot函数绘制的,作为一个ggplot2的爱好者自己尝试着用ggplot2把函数boxplert()重新写了一下。在重写的过程中收获几个问题:X轴如何按照给定的数
- python方差分析
彭博锐
python开发语言学习笔记
方差分析方差分析(AnalysisofVariance,简称ANOVA)是一种统计方法,用于比较两个或更多组之间的平均值是否存在显著差异。它可以帮助确定不同组之间的变异程度是否超过了在组内观察到的变异程度。方差分析通常用于实验设计和研究中,以确定不同处理或条件对变量的影响是否显著。方差分析的基本思想是将总体变异分解为两部分:组间变异和组内变异。组间变异是指不同组之间的差异,而组内变异是指同一组内观
- SPSS进行双因素有重复方差分析
谢俊飞
目前看到的双因素方差分析教程当中,以下两个比较是写的比较好的,以飨读者。1.运用spss软件进行双因素有重复方差分析2.SPSS在化学试验双因素方差分析中的应用_戴孟莲百度经验的这个操作比较全面,参数详细,配图清晰,如果再加以原理的理解,更加全面。下面主要对几个主要的参数选择做几点说明:1.依次点击“分析”——“一般线性模型”——“单变量”,由于我们这里只有“产量”,所以是单变量,如果有两个指标,
- 统计 假设检验 显著性差异
73826669
#统计数学
假设检验的显著性差异检验主要是用来比较两组或多组数据中,是否每组数据对结果的影响基本一致。换言之,这是用来判断每组数据代表的因素中,是否有主要影响因素。大致思路是先检验各组数据是否有显著性差异,再进行事后分析找出有显著差异的因素文章目录w检验Levene检验显著性检验单向方差分析(F检验)Kruskal-WallisH检验事后分析方差齐性方差不齐w检验W检验全称Shapiro-Wilk检验,是一种
- DataWhale概率统计4——方差分析
摩卡Daddy
6.方差分析6.1概要方差分析(Analysisofvariance,ANOVA)主要研究分类变量作为自变量时,对因变量的影响是否显著,用于两个及两个以上样本均属差别的显著性检验。由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分为两类,一是不可控的随机因素,另一是研究中施加对结果形成影响的可控因素6.2原理方差分析(ANOVA)又称“变异数分析”或“F检验”,是由罗纳德·费雪爵士发
- excel统计分析——成对数据秩和检验
maizeman126
统计分析excel秩和检验
参考资料:生物统计学将数据按从小到大的顺序排列起来,数据顺序编号称为数据的秩次(rank)。秩和检验(rank-sumtest)是用秩次的大小代替数据的具体数值进行比较的非参数检验方法。具体做法如下:先将数据从小到大,或等级变量资料从弱到强转换成秩次,在求出秩次之和以及相应的检验统计量,与临界值比较后确定P值,然后与α比较进行推断。不满足t检验、方差分析条件的数量性状资料或等级资料,可用秩和检验进
- 数据不正态如何办?
spssau
在实际研究中,很多时候都需要数据满足正态分布才可以。比如说回归分析,其实做回归分析有一个前提条件即因变量需要满足正态分布性。也比如说方差分析,其有一个潜在的前提假定即因变量Y需要满足正态分布。还有很多种情况,比如T检验,相关分析等等。但这种情况往往被分析人员忽略掉,或者是数学基本不够扎实,或者是无论如何数据均不满足正态分布等客观条件,也或者其它情况等。如果说没有满足前提条件,分析的结果会变得不科学
- 收藏 | 统计学最全思维导图,附下载链接
一木Campus
本文用一系列「思维导图」由浅入深的总结了「统计学」领域的基础知识,是对之前系列文章做的一次完整的梳理,也是我至今为止所有与统计有关的学习笔记。众所周知,「统计学」是深入理解「机器学习/数据挖掘」的重要基础学科。思维导图描述性统计:表格与图形法描述性统计:数值方法概率概率分布抽样分布区间估计假设检验两总体均值&比例的推断总体方差的统计推断多个比率的比较/独立性/拟合优度检验实验设计|方差分析简单线性
- 严恭敏 matlab,惯性仪器测试与数据分析 [严恭敏 编] 2012年版
洋溢最棒
严恭敏matlab
惯性仪器测试与数据分析作者:严恭敏编出版时间:2012年版内容简介《惯性仪器测试与数据分析》比较系统和全面地介绍了陀螺仪、加速度计和惯导系统的测试原理以及典型的数据分析方法。全书内容可大致分为三个部分:①惯性器件测试部分,介绍了几种常见惯性器件的工作原理和误差建模、惯性器件测试的基本原理和方法以及实验室中常用的惯性仪器测试设备;②数据分析部分,包括回归分析、时间序列分析、频谱分析、阿仑方差分析和随
- 单因素被试内重复测量的方差分析
孤光数据分析
单因素被试内重复测量的方差分析目录(一)适用情况(二)基本计算(1)平方和的计算(2)自由度的计算(3)F值的计算(三)spss操作及结果(1)数据(2)spss操作(3)结果(一)适用情况(1)被试接受所有的处理水平。(2)处理水平连续实施给同一个被试时,前面的实验处理不会对后面的实验处理有长期影响。(3)消除顺序效应。例如:为检验某种行为方式随年龄变化的情况,在4个时间点对8名被试进行重复测量
- R语言方差分析
医学和生信笔记
本文首发于公众号:医学和生信笔记,完美观看体验请至公众号查看本文。医学和生信笔记,专注R语言在临床医学中的使用,R语言数据分析和可视化。这是R语言和医学统计学的第2篇内容。主要是用R语言复现课本中的例子。我使用的课本是孙振球主编的《医学统计学》第4版,封面如下:image.png使用课本例4-2的数据。首先是构造数据,本次数据自己从书上摘录。。trtF)##trt332.1610.71924.88
- 均值比较和T检验
何同尘
均值过程:求取平均值标准差等单样本T检验独立样本T检验配对样本T检验均值比较就是求取样本平均值,组间均值比较,总体均值估计。T检验就是对样本均值代替总体均值的假设检验。以及方差分析。分析单因素对该水平的影响。image.png
- 学习:StatQuest-单因素方差分析及t检验
小潤澤
ttestttest适用于两组数据之间的比较我们看这个例子:image.png我们分别计算这两个组别的均值image.png那么对于Control组的每个数据点来说均可以表示为:image.png即1x2.2(Control组均值)+0x3.6(Mutants组均值)+control组每个数据点与该组均值的离差同理,mutants组的也一样:image.png那么前面的系数可以组成系数矩阵imag
- 最新GraphPad Prism Mac直装版(医学绘图软件)v9.4.1
maczhen22
macos
GraphPadPrism9forMac是一款功能强大的医学绘图软件。GraphPadPrism9Mac破解版提供了八种不同类型的数据表和广泛的分析库,从常见到高度特异性-非线性回归,t检验,非参数比较,单因素,双因素和三因子方差分析,列联表,生存分析等等。GraphPadPrism9forMac功能特色世界科学家的首选工具110个国家的750,000多名科学家依靠Prism帮助他们与世界分享他们
- 数学建模学习笔记||灰色关联分析
展信佳 :)
数学建模学习笔记
灰色系统信息绝对透明的是白色系统,信息绝对秘密的是黑色系统,灰色系统介于两者之间关联分析即系统的分析因素包含多种因素的系统中,哪些因素是主要的,哪些因素是次要的,哪些因素影响大,哪些因素影响小,哪些需要发展,哪些需要抑制……现有因素分析的量化方法,大都是数理统计法,如回归分析,方差分析,主要成分分析等,但都有一下弱点:要求大量数据,数据量少难以找到统计规律要求分布是典型的(线性的,指数的或对数的)
- 统计学-R语言-8.2
柔雾
统计学-R语言r语言开发语言
文章目录前言双因子方差分析数学模型主效应分析交互效应分析正态性检验绘制3个品种产量数据合并后的正态Q-Q图(数据:example8_2)练习前言本篇将继续介绍方差分析的知识。双因子方差分析考虑两个类别自变量对数值因变量影响的方差分析称为双因子方差分析(two-wayanalysisofvariance)(分析两个因子(因子A和因子B)对实验结果的影响)分析时有两种情形:只考虑两个因子对因变量的单独
- 1.19信息学,信息熵(wordle)
CQU_JIAKE
数学方法机器学习人工智能深度学习
所谓均方误差实际上就是方差分析:对单词进行编码后,采用聚类方法,可以将单词难度分为三类或者更多,如困难、一般、简单。然后对每一类的单词可视化分析,并描述数据得出结论。聚类算法较多,在论文中可以使用改进的聚类算法就是说,情况越少,在总的所有可能情况里出现的概率也就越少,出现的话,那么也就越能确定如果所蕴含的信息越多,那么就是经过的判断也就越多,即经过所谓判断(是或不是)也就越多,也就是说,就是用所蕴
- 统计学-R语言-8.1
柔雾
r语言开发语言
文章目录前言方差分析方差分析的原理什么是方差分析误差分解单因子方差分析数学模型效应检验练习前言本片开始介绍有关方差分析的知识。方差分析方差分析的基本原理是在20世纪20年代由英国统计学家RonaldA.Fisher在进行实验设计时为解释实验数据而首先引入的。方差分析是一种统计方法。目前,方差分析方法广泛应用于分析心理学、生物学、工程和医药的实验数据。本章首先介绍方差分析的基本原理,然后介绍只涉及一
- 怎么用SPSS分析三组数据的差异是否显著?
数据科学作家
数据挖掘数据分析SPSS方差分析实证研究差异分析SPSS数据分析
可使用单因素ANOVA检验,也就是单因素方差分析,用来检验多组变量的均值是否相等,本质上是两个独立样本T检验的拓展。单因素方差分析的概念原理单因素方差分析按照单因子变量(只有一个自变量)生成对单一定量因变量(因变量也只有一个)的方差分析,对数据的要求是因变量应为定量连续变量,自变量取值应为整数。单因素方差分析除了可以确定不同组变量之间的均值是否相等之外,还可以检验发现具体是哪些组之间存在显著差异,
- 课题学习(十九)----Allan方差:陀螺仪噪声分析
致虚守静~归根复命
课题学习学习算法
一、介绍 Allan方差是一种分析时域数据序列的方法,用于测量振荡器的频率稳定性。该方法还可用于确定系统中作为平均时间函数的本征噪声。该方法易于计算和理解,是目前最流行的识别和量化惯性传感器数据中存在的不同噪声项的方法之一。该方法的结果与适用于惯性传感器数据的五个基本噪声项有关。这些是量化噪声、角度随机游走、偏置不稳定性、速率随机游走和速率斜坡。 时域信号Ω()的Allan方差分析是计算其根A
- Python实现基于多元线性回归模型进行统计学相互作用和方差分析(anova算法)项目实战
胖哥真不错
机器学习python线性回归人工智能机器学习python相互作用方差分析anova算法
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。1.项目背景多元线性回归模型(MultipleLinearRegressionModel)是一种统计学方法,用于研究一个或多个自变量(predictors)与因变量(dependentvariable)之间的关系。在模型中,因变量的值通过一个线性函数来预测,该函数包含了自变量的系
- 单因素重复测量方差分析原理和SAS代码实现
kaiming0000
SAS人工智能算法
重复测量设计:就是对研究对象某指标进行重复测量,最常见的情况是在前、后分别测量1次,又称为前后测量;当测量次数>=3时,即为重复测量设计。一般采取的统计学方法是重复测量方差分析。重复测量设计包括单组重复测量设计和多组重复测量设计。应用条件:要求因变量符合正态性方差齐性(针对于多组的情况,因为单组只有一个方差);另外还需满足球形性,否则需要校正;不满足球形性,可采用以下两种方法:G-G校正和H-F校
- 遍历dom 并且存储(将每一层的DOM元素存在数组中)
换个号韩国红果果
JavaScripthtml
数组从0开始!!
var a=[],i=0;
for(var j=0;j<30;j++){
a[j]=[];//数组里套数组,且第i层存储在第a[i]中
}
function walkDOM(n){
do{
if(n.nodeType!==3)//筛选去除#text类型
a[i].push(n);
//con
- Android+Jquery Mobile学习系列(9)-总结和代码分享
白糖_
JQuery Mobile
目录导航
经过一个多月的边学习边练手,学会了Android基于Web开发的毛皮,其实开发过程中用Android原生API不是很多,更多的是HTML/Javascript/Css。
个人觉得基于WebView的Jquery Mobile开发有以下优点:
1、对于刚从Java Web转型过来的同学非常适合,只要懂得HTML开发就可以上手做事。
2、jquerym
- impala参考资料
dayutianfei
impala
记录一些有用的Impala资料
1. 入门资料
>>官网翻译:
http://my.oschina.net/weiqingbin/blog?catalog=423691
2. 实用进阶
>>代码&架构分析:
Impala/Hive现状分析与前景展望:http
- JAVA 静态变量与非静态变量初始化顺序之新解
周凡杨
java静态非静态顺序
今天和同事争论一问题,关于静态变量与非静态变量的初始化顺序,谁先谁后,最终想整理出来!测试代码:
import java.util.Map;
public class T {
public static T t = new T();
private Map map = new HashMap();
public T(){
System.out.println(&quo
- 跳出iframe返回外层页面
g21121
iframe
在web开发过程中难免要用到iframe,但当连接超时或跳转到公共页面时就会出现超时页面显示在iframe中,这时我们就需要跳出这个iframe到达一个公共页面去。
首先跳转到一个中间页,这个页面用于判断是否在iframe中,在页面加载的过程中调用如下代码:
<script type="text/javascript">
//<!--
function
- JAVA多线程监听JMS、MQ队列
510888780
java多线程
背景:消息队列中有非常多的消息需要处理,并且监听器onMessage()方法中的业务逻辑也相对比较复杂,为了加快队列消息的读取、处理速度。可以通过加快读取速度和加快处理速度来考虑。因此从这两个方面都使用多线程来处理。对于消息处理的业务处理逻辑用线程池来做。对于加快消息监听读取速度可以使用1.使用多个监听器监听一个队列;2.使用一个监听器开启多线程监听。
对于上面提到的方法2使用一个监听器开启多线
- 第一个SpringMvc例子
布衣凌宇
spring mvc
第一步:导入需要的包;
第二步:配置web.xml文件
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi=
- 我的spring学习笔记15-容器扩展点之PropertyOverrideConfigurer
aijuans
Spring3
PropertyOverrideConfigurer类似于PropertyPlaceholderConfigurer,但是与后者相比,前者对于bean属性可以有缺省值或者根本没有值。也就是说如果properties文件中没有某个bean属性的内容,那么将使用上下文(配置的xml文件)中相应定义的值。如果properties文件中有bean属性的内容,那么就用properties文件中的值来代替上下
- 通过XSD验证XML
antlove
xmlschemaxsdvalidationSchemaFactory
1. XmlValidation.java
package xml.validation;
import java.io.InputStream;
import javax.xml.XMLConstants;
import javax.xml.transform.stream.StreamSource;
import javax.xml.validation.Schem
- 文本流与字符集
百合不是茶
PrintWrite()的使用字符集名字 别名获取
文本数据的输入输出;
输入;数据流,缓冲流
输出;介绍向文本打印格式化的输出PrintWrite();
package 文本流;
import java.io.FileNotFound
- ibatis模糊查询sqlmap-mapping-**.xml配置
bijian1013
ibatis
正常我们写ibatis的sqlmap-mapping-*.xml文件时,传入的参数都用##标识,如下所示:
<resultMap id="personInfo" class="com.bijian.study.dto.PersonDTO">
<res
- java jvm常用命令工具——jdb命令(The Java Debugger)
bijian1013
javajvmjdb
用来对core文件和正在运行的Java进程进行实时地调试,里面包含了丰富的命令帮助您进行调试,它的功能和Sun studio里面所带的dbx非常相似,但 jdb是专门用来针对Java应用程序的。
现在应该说日常的开发中很少用到JDB了,因为现在的IDE已经帮我们封装好了,如使用ECLI
- 【Spring框架二】Spring常用注解之Component、Repository、Service和Controller注解
bit1129
controller
在Spring常用注解第一步部分【Spring框架一】Spring常用注解之Autowired和Resource注解(http://bit1129.iteye.com/blog/2114084)中介绍了Autowired和Resource两个注解的功能,它们用于将依赖根据名称或者类型进行自动的注入,这简化了在XML中,依赖注入部分的XML的编写,但是UserDao和UserService两个bea
- cxf wsdl2java生成代码super出错,构造函数不匹配
bitray
super
由于过去对于soap协议的cxf接触的不是很多,所以遇到了也是迷糊了一会.后来经过查找资料才得以解决. 初始原因一般是由于jaxws2.2规范和jdk6及以上不兼容导致的.所以要强制降为jaxws2.1进行编译生成.我们需要少量的修改:
我们原来的代码
wsdl2java com.test.xxx -client http://.....
修改后的代
- 动态页面正文部分中文乱码排障一例
ronin47
公司网站一部分动态页面,早先使用apache+resin的架构运行,考虑到高并发访问下的响应性能问题,在前不久逐步开始用nginx替换掉了apache。 不过随后发现了一个问题,随意进入某一有分页的网页,第一页是正常的(因为静态化过了);点“下一页”,出来的页面两边正常,中间部分的标题、关键字等也正常,唯独每个标题下的正文无法正常显示。 因为有做过系统调整,所以第一反应就是新上
- java-54- 调整数组顺序使奇数位于偶数前面
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
import ljn.help.Helper;
public class OddBeforeEven {
/**
* Q 54 调整数组顺序使奇数位于偶数前面
* 输入一个整数数组,调整数组中数字的顺序,使得所有奇数位于数组的前半部分,所有偶数位于数组的后半
- 从100PV到1亿级PV网站架构演变
cfyme
网站架构
一个网站就像一个人,存在一个从小到大的过程。养一个网站和养一个人一样,不同时期需要不同的方法,不同的方法下有共同的原则。本文结合我自已14年网站人的经历记录一些架构演变中的体会。 1:积累是必不可少的
架构师不是一天练成的。
1999年,我作了一个个人主页,在学校内的虚拟空间,参加了一次主页大赛,几个DREAMWEAVER的页面,几个TABLE作布局,一个DB连接,几行PHP的代码嵌入在HTM
- [宇宙时代]宇宙时代的GIS是什么?
comsci
Gis
我们都知道一个事实,在行星内部的时候,因为地理信息的坐标都是相对固定的,所以我们获取一组GIS数据之后,就可以存储到硬盘中,长久使用。。。但是,请注意,这种经验在宇宙时代是不能够被继续使用的
宇宙是一个高维时空
- 详解create database命令
czmmiao
database
完整命令
CREATE DATABASE mynewdb USER SYS IDENTIFIED BY sys_password USER SYSTEM IDENTIFIED BY system_password LOGFILE GROUP 1 ('/u01/logs/my/redo01a.log','/u02/logs/m
- 几句不中听却不得不认可的话
datageek
1、人丑就该多读书。
2、你不快乐是因为:你可以像猪一样懒,却无法像只猪一样懒得心安理得。
3、如果你太在意别人的看法,那么你的生活将变成一件裤衩,别人放什么屁,你都得接着。
4、你的问题主要在于:读书不多而买书太多,读书太少又特爱思考,还他妈话痨。
5、与禽兽搏斗的三种结局:(1)、赢了,比禽兽还禽兽。(2)、输了,禽兽不如。(3)、平了,跟禽兽没两样。结论:选择正确的对手很重要。
6
- 1 14:00 PHP中的“syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM”错误
dcj3sjt126com
PHP
原文地址:http://www.kafka0102.com/2010/08/281.html
因为需要,今天晚些在本机使用PHP做些测试,PHP脚本依赖了一堆我也不清楚做什么用的库。结果一跑起来,就报出类似下面的错误:“Parse error: syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM in /home/kafka/test/
- xcode6 Auto layout and size classes
dcj3sjt126com
ios
官方GUI
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/AutolayoutPG/Introduction/Introduction.html
iOS中使用自动布局(一)
http://www.cocoachina.com/ind
- 通过PreparedStatement批量执行sql语句【sql语句相同,值不同】
梦见x光
sql事务批量执行
比如说:我有一个List需要添加到数据库中,那么我该如何通过PreparedStatement来操作呢?
public void addCustomerByCommit(Connection conn , List<Customer> customerList)
{
String sql = "inseret into customer(id
- 程序员必知必会----linux常用命令之十【系统相关】
hanqunfeng
Linux常用命令
一.linux快捷键
Ctrl+C : 终止当前命令
Ctrl+S : 暂停屏幕输出
Ctrl+Q : 恢复屏幕输出
Ctrl+U : 删除当前行光标前的所有字符
Ctrl+Z : 挂起当前正在执行的进程
Ctrl+L : 清除终端屏幕,相当于clear
二.终端命令
clear : 清除终端屏幕
reset : 重置视窗,当屏幕编码混乱时使用
time com
- NGINX
IXHONG
nginx
pcre 编译安装 nginx
conf/vhost/test.conf
upstream admin {
server 127.0.0.1:8080;
}
server {
listen 80;
&
- 设计模式--工厂模式
kerryg
设计模式
工厂方式模式分为三种:
1、普通工厂模式:建立一个工厂类,对实现了同一个接口的一些类进行实例的创建。
2、多个工厂方法的模式:就是对普通工厂方法模式的改进,在普通工厂方法模式中,如果传递的字符串出错,则不能正确创建对象,而多个工厂方法模式就是提供多个工厂方法,分别创建对象。
3、静态工厂方法模式:就是将上面的多个工厂方法模式里的方法置为静态,
- Spring InitializingBean/init-method和DisposableBean/destroy-method
mx_xiehd
javaspringbeanxml
1.initializingBean/init-method
实现org.springframework.beans.factory.InitializingBean接口允许一个bean在它的所有必须属性被BeanFactory设置后,来执行初始化的工作,InitialzingBean仅仅指定了一个方法。
通常InitializingBean接口的使用是能够被避免的,(不鼓励使用,因为没有必要
- 解决Centos下vim粘贴内容格式混乱问题
qindongliang1922
centosvim
有时候,我们在向vim打开的一个xml,或者任意文件中,拷贝粘贴的代码时,格式莫名其毛的就混乱了,然后自己一个个再重新,把格式排列好,非常耗时,而且很不爽,那么有没有办法避免呢? 答案是肯定的,设置下缩进格式就可以了,非常简单: 在用户的根目录下 直接vi ~/.vimrc文件 然后将set pastetoggle=<F9> 写入这个文件中,保存退出,重新登录,
- netty大并发请求问题
tianzhihehe
netty
多线程并发使用同一个channel
java.nio.BufferOverflowException: null
at java.nio.HeapByteBuffer.put(HeapByteBuffer.java:183) ~[na:1.7.0_60-ea]
at java.nio.ByteBuffer.put(ByteBuffer.java:832) ~[na:1.7.0_60-ea]
- Hadoop NameNode单点问题解决方案之一 AvatarNode
wyz2009107220
NameNode
我们遇到的情况
Hadoop NameNode存在单点问题。这个问题会影响分布式平台24*7运行。先说说我们的情况吧。
我们的团队负责管理一个1200节点的集群(总大小12PB),目前是运行版本为Hadoop 0.20,transaction logs写入一个共享的NFS filer(注:NetApp NFS Filer)。
经常遇到需要中断服务的问题是给hadoop打补丁。 DataNod