Glide简介
Glide是Google推荐的一套快速高效的图片加载框架,作者是bumptech,功能强大且使用方便,实际的android应用开发中,有不少的开发者在使用它,今天,老衲就带大家来讲解下Glide的使用及实现的逻辑流程。
Glide的使用
Glide的使用与前一篇的Picasso类似,都是链式调用,极其方便。但是,与其他的图片加载框架不同的是,Glide支持GIF的加载与解码。这是该框架的一个亮点,以下为常用API
//设置默认和出错时的图片
Glide.with(this).load(url).placeholder(resId).error(resId).into(mImageView)
//普通的图片加载
Glide.with(this).load(url).into(mImageView);
//可理解为加载动态图的第一帧的Bitmap,比如Gif
Glide.with(this).load(url).asBitmap().into(imageView);
//GIF加载,URL指向的资源必须是gif,如果是普通图片则不显示。
//相反,如果指向正确但没有执行asGif方法,则只是作为普通图片展示
Glide.with(this).asGif().load(url).into(mImageView);
//缩略图的加载
Glide.with(yourFragment).load(yourUrl).thumbnail(0.1f).into(yourView)
Glide的核心思想:
第一条是多数人认可的观点,其他则是老衲自己在分析源码时对该框架的一些感悟。如有不对请指出
- 对象池:
Glide原理的核心是为bitmap维护一个对象池。对象池的主要目的是通过减少大对象内存的分配以重用来提高性能。对象池的概念参见对象池的使用 - 生命周期绑定:
图片的加载任务会与activity或者Fragment的生命周期绑定,当界面执行onStop的使用自动暂定,而当执行onStart的时候又会自动重新开启,同样的,动态Gif图的加载也是如此,以用来节省电量,同时Glide会对网络状态做监听,当网络状态发生改变时,会重启失败的任务,以减少任务因网络连接问题而失败的概率。 - 预览图的使用
为加快加载速度,提高体验,优先加载预览图 - AbsListView内图片的预加载:
Glide的代码流程分析
按照惯例,首先介绍一下业务逻辑中需要用到的类。有印象即可
RequestManager
Glide用来管理和开始请求的类,实现了LifecycleListener接口并重写了如下方法,可以使用Activity和Fragment的生命周期事件机制的开启,停止及重启请求任务。
/**
* 开始图片加载请求,一般在Activity或者Fragment的onStart方法内执行,用来重启失败或暂停的任务。
*/
@Override
public void onStart() {
resumeRequests();
}
/**
* 暂停图片加载请求,一般在Activity或Fragment的onStop方法内执行,用来暂停任务。
*/
@Override
public void onStop() {
pauseRequests();
}
/**
* 取消正在执行的请求,以及释放已完成请求的资源。
*/
@Override
public void onDestroy() {
requestTracker.clearRequests();
}
RequestManagerFragment
没有视图的fragment,简单的来讲,就是在每一个Activity或者Fragment上又添加了一个Fragment,该Fragment没有View,仅仅用来存储RequestManager并管理Glide请求
RequestManagerRetriever
用来创建并从Activity或者Fragment检索已存在的RequestManager
Engine
负责开始加载任务,以及管理活跃的,已缓存的资源
BitmapPool(bitmap对象的缓存池)
Bitmap内存池,用来复用对象
LruBitmapPool//基于LruPoolStrategy策略的BitmapPool
BitmapPoolAdapter//该实现类拒绝了对象的复用,get方法总是返回null
LruPoolStrategy
对象池内对象的匹配策略,根据不同的标准,有如下三种匹配策略
//校验bitmap内存大小和图片格式,内部的实现基于数组
1. SizeConfigStrategy
//仅要求bitmap尺寸完全匹配,内部的实现基于HashMap
2. AttributeStrategy
//校验bitmap尺寸和图片格式,内部实现基于TreeMap
3. SizeStrategy
RequestTracker
用来跟踪,取消和重启正在进行中,或者已完成,失败的请求
ConnectivityMonitor
网络状态改变的监听,本质是一个BroadcastReceiver,值得一提的是,该类也是LifecycleListener的实现类,所以,也会有onStart,onStop的方法,而内部的逻辑,就是对网络状态监听广播的注册于反注册
//注册网络状态改变的监听广播
private void register() {
if (isRegistered) {
return;
}
isConnected = isConnected(context);
context.registerReceiver(connectivityReceiver,
new IntentFilter(ConnectivityManager.CONNECTIVITY_ACTION));
isRegistered = true;
}
//取消注册
private void unregister() {
if (!isRegistered) {
return;
}
context.unregisterReceiver(connectivityReceiver);
isRegistered = false;
}
//是否有网络链接
private boolean isConnected(Context context) {
ConnectivityManager connectivityManager = (ConnectivityManager)
context.getSystemService(Context.CONNECTIVITY_SERVICE);
NetworkInfo networkInfo = connectivityManager.getActiveNetworkInfo();
return networkInfo != null && networkInfo.isConnected();
}
@Override
public void onStart() {
register();
}
@Override
public void onStop() {
unregister();
}
Resource
支持复用及池存储功能的特殊类型的接口,以下是其部分实现类
EngineResource //支持引用计数的Resource
BitmapResource //Bitmap的包装类
DrawableResource //抽象类,根据ConstantState返回一个依赖于自身ConstantState的drawable的副本
BitmapDrawableResource //BitmapDrawable的包装类
GifDrawableResource //GifDrawable的包装类
Target:
LifecycleListener接口的子类,Glide用来加载资源并在加载时通知相关声明周期事件的接口。ViewTarget是它的抽象实现类。典型的生命周期是onLoadStarted -> onResourceReady or onLoadFailed -> onLoadCleared,然而并不保证一定按照此顺序执行,比如:如果资源已经在内存中,则onLoadStarted就不会被调用,同样的,如果Target如果永远不被清除,则onLoadCleared永远不会被调用。
//加载开始时调用
void onLoadStarted(@Nullable Drawable placeholder);
//加载失败是调用
void onLoadFailed(@Nullable Drawable errorDrawable);
//加载结束时调用
void onResourceReady(R resource, Transition super R> transition);
//加载任务取消并且资源被释放时调用
void onLoadCleared(@Nullable Drawable placeholder);
//取回目标大小,Callback的实现类为SizeDeterminer,在ViewTarget.class中
void getSize(SizeReadyCallback cb);
ViewTarget
加载资源的基类。Target的部分实现类。根据参数的类型,有不同的实现方法,并能通过ViewTreeObserver.OnDrawListener来决定View的大小。
在需要检测任意涉及到复用View的ViewGroup时(比如listview),该类用setTag方法来存储一些标志,当检测到复用时,之前的加载任务和对应的资源文件会被取消或复用。
ImageViewTarget:在ImageView中展示图片的基类,有如下两个子类
DrawableImageViewTarget:当参数是drawable的使用使用
//核心方法
@Override
protected void setResource(Bitmap resource) {
view.setImageBitmap(resource);
}
BitmapImageViewTarget:当参数是bitmap 的时候使用
//核心方法
@Override
protected void setResource(Bitmap resource) {
view.setImageBitmap(resource);
}
LifecycleListener
Fragment和Activity生命周期方法的监听类,主要用来监听onStart,onStop,onDestroy三个方法。实现类如下RequestTracker
RequestManager:负责监听Fragment和Activity中对应的方法
@Override
public void onStart() {
resumeRequests(); //重启暂停或者失败的任务
targetTracker.onStart();
}
@Override
public void onStop() {
pauseRequests(); //暂停正在执行的任务
targetTracker.onStop();
}
DefaultConnectivityMonitor:负责网络状态监听广播的注册于反注册
@Override
public void onStart() {
register();
}
@Override
public void onStop() {
unregister();
}
BaseTarget:空实现,真正的实现者是其子类ImageViewTarget,用来开始与暂停动画
@Override
public void onStart() {
if (animatable != null) {
animatable.start();
}
}
@Override
public void onStop() {
if (animatable != null) {
animatable.stop();
}
}
TargetTracker:该类调用的,其实是Target类中对应的方法
@Override
public void onStart() {
for (Target> target : Util.getSnapshot(targets)) {
target.onStart();
}
}
@Override
public void onStop() {
for (Target> target : Util.getSnapshot(targets)) {
target.onStop();
}
}
RequestFutureTarget:空实现,忽略
NullConnectivityMonitor:空实现,忽略
DataFetcher
数据提取的抽象接口,根据资源的来源有不同的实现,例如
HttpUrlFetcher //加载网络图片数据
AssetPathFetcher //加载Asset图片数据
LocalUriFetcher //加载本地图片数据
ThumbFetcher //加载MediaStore中的缩略图数据
DiskCacheStrategy
缓存策略的抽象类,只有Glide提供的固定的几个对象,分别对应不同的策略
ALL:远程数据同时缓存Data和Resource,本地数据仅缓存Resource
NONE:不缓存任何数据
DATA:解码之前直接将数据写入硬盘
RESOURCE:解码之后写入硬盘
AUTOMATIC:默认策略,根据DataFetcher以及ResourceEncoder的编码策略(EncodeStrategy)智能选择
Glide图片加载的业务流程
1. Glide的初始化
public static Glide get(Context context) {
if (glide == null) {
synchronized (Glide.class) {
if (glide == null) {
Context applicationContext = context.getApplicationContext();
//查找manifest文件中注册的懒加载的配置信息,下面会介绍到
List modules = new ManifestParser(applicationContext).parse();
GlideBuilder builder = new GlideBuilder(applicationContext);
for (GlideModule module : modules) {
module.applyOptions(applicationContext, builder);
}
//创建Glide实例
glide = builder.createGlide();
for (GlideModule module : modules) {
module.registerComponents(applicationContext, glide.registry);
}
}
}
}
return glide;
}
创建Glide实例对象
Glide createGlide() {
//依赖于优先级的线程池,用来执行Glide的加载,解码和转换任务(当从缓存中没有找到对应的对象时)
//线程数量取决于当前唤醒的CPU核数,而不是CPU的总数
if (sourceExecutor == null) {
sourceExecutor = GlideExecutor.newSourceExecutor();
}
//依赖于优先级的线程池,用来执行Glide的加载,解码和转换任务(当从缓存中有对应的对象时)
//线程数量为1
if (diskCacheExecutor == null) {
diskCacheExecutor = GlideExecutor.newDiskCacheExecutor();
}
//内存大小的计算器,计算结果取决于一些常量和当前设备的信息(宽,高,像素密度),最后会与介绍
if (memorySizeCalculator == null) {
memorySizeCalculator = new MemorySizeCalculator.Builder(context).build();
}
//网络活动监视器,用来检测网络状态
if (connectivityMonitorFactory == null) {
connectivityMonitorFactory = new DefaultConnectivityMonitorFactory();
}
//bitmap对象池,用来存储bitmap对象
if (bitmapPool == null) {
//3.0以上使用基于LRU算法的bitmap对象池
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
int size = memorySizeCalculator.getBitmapPoolSize();
bitmapPool = new LruBitmapPool(size);
} else {
bitmapPool = new BitmapPoolAdapter();
}
}
//基于LRU算法的数组缓存池
if (arrayPool == null) {
arrayPool = new LruArrayPool(memorySizeCalculator.getArrayPoolSizeInBytes());
}
if (memoryCache == null) {
memoryCache = new LruResourceCache(memorySizeCalculator.getMemoryCacheSize());
}
//硬盘缓存
if (diskCacheFactory == null) {
diskCacheFactory = new InternalCacheDiskCacheFactory(context);
}
//负责开启加载任务以及管理活跃的或者缓存的图片资源
if (engine == null) {
engine = new Engine(memoryCache, diskCacheFactory, diskCacheExecutor, sourceExecutor);
}
return new Glide(context,
engine,
memoryCache,
bitmapPool,
arrayPool,
connectivityMonitorFactory,
logLevel,
defaultRequestOptions.lock());
}
Glide真正的构造方法
Glide(Context context,
Engine engine,
MemoryCache memoryCache,
BitmapPool bitmapPool,
ArrayPool arrayPool,
ConnectivityMonitorFactory connectivityMonitorFactory,
int logLevel,
RequestOptions defaultRequestOptions) {
this.engine = engine;
this.bitmapPool = bitmapPool;
this.arrayPool = arrayPool;
this.memoryCache = memoryCache;
this.connectivityMonitorFactory = connectivityMonitorFactory;
//图片的加载格式(ARGB_8888或RGB_565),默认ARGB_8888,判断规则如下
//如果支持透明或者使用了透明则使用ARGB_8888
//如果不支持透明则使用ARGB_565
DecodeFormat decodeFormat = defaultRequestOptions.getOptions().get(Downsampler.DECODE_FORMAT);
//BitmapPool的预填充器,最后面有介绍
bitmapPreFiller = new BitmapPreFiller(memoryCache, bitmapPool, decodeFormat);
Resources resources = context.getResources();
//从给定的inputstream中解码图片
Downsampler downsampler = new Downsampler(resources.getDisplayMetrics(), bitmapPool, arrayPool);
//Gif图片资源的解码器
ByteBufferGifDecoder byteBufferGifDecoder = new ByteBufferGifDecoder(context, bitmapPool, arrayPool);
...
//包含了加载图片资源所需要的类,比如Registry,Engine,等等
glideContext = new GlideContext(context, registry, imageViewTargetFactory, defaultRequestOptions, engine, this, logLevel);
}
2. 创建请求管理器RequestManager
首先根据context的类型,拿到FragmentManager
public RequestManager get(Context context) {
if (context == null) {
...
} else if (Util.isOnMainThread() && !(context instanceof Application)) {
if (context instanceof FragmentActivity) {
//FragmentActivity
return get((FragmentActivity) context);
} else if (context instanceof Activity) {
//Activity
return get((Activity) context);
} else if (context instanceof ContextWrapper) {
//如果不属于以上两种,则递归查找父类Context
return get(((ContextWrapper) context).getBaseContext());
}
}
//返回ApplicationManager
return getApplicationManager(context);
}
...//get()中会调用fragmentGet方法
@TargetApi(Build.VERSION_CODES.HONEYCOMB)
RequestManager fragmentGet(Context context,
android.app.FragmentManager fm, android.app.Fragment parentHint) {
//获取RequestManagerFragment
RequestManagerFragment current = getRequestManagerFragment(fm, parentHint);
//获取RequestManagerFragment对应的RequestManager(请求管理器)
RequestManager requestManager = current.getRequestManager();
if (requestManager == null) {
requestManager = new RequestManager(context, current.getLifecycle(),
current.getRequestManagerTreeNode());
current.setRequestManager(requestManager);
}
return requestManager;
}
RequestManagerRetriever中使用两个map用来分别存放RequestManagerFragment和SupportRequestManagerFragment,Key都是FragmentManager。说白了就是每一个Activity或者FragmentActivity都有一个唯一的FragmentManager,通过这个FragmentManager作为key就可以找到该Activity对应的RequestManagerFragment,Glide就是通过这个Fragment用来实现在生命周期中图片加载的控制,比如Paused状态在暂停加载,在Resumed的时候又自动重新加载
@TargetApi(Build.VERSION_CODES.JELLY_BEAN_MR1)
RequestManagerFragment getRequestManagerFragment(final android.app.FragmentManager fm
, android.app.Fragment parentHint) {
RequestManagerFragment current = (RequestManagerFragment) fm.findFragmentByTag(FRAGMENT_TAG);
if (current == null) {
//pendingRequestManagerFragments是一个
current = pendingRequestManagerFragments.get(fm);
if (current == null) {
current = new RequestManagerFragment();
current.setParentFragmentHint(parentHint);
pendingRequestManagerFragments.put(fm, current);
fm.beginTransaction().add(current, FRAGMENT_TAG).commitAllowingStateLoss();
handler.obtainMessage(ID_REMOVE_FRAGMENT_MANAGER, fm).sendToTarget();
}
}
return current;
}
2. 填充资源路径(网络路径或本地路径)
/**
* 利用默认的请求参数创建RequestBuilder
* 默认的参数包括,是否启动硬盘缓存,优先级,错误及加载中的默认图片等
* 详情请看BaseRequestOptions.java类
* @return A new request builder for loading a { Drawable} using the given model.
*/
public RequestBuilder load(@Nullable Object model) {
return asDrawable().load(model);
}
3. 设置要加载图片的Target(ImageView)
public Target into(ImageView view) {
Util.assertMainThread();
Preconditions.checkNotNull(view);
if (!requestOptions.isTransformationSet()
&& requestOptions.isTransformationAllowed()
&& view.getScaleType() != null) {
...
return into(context.buildImageViewTarget(view, transcodeClass));
}
public > Y into(@NonNull Y target) {
Util.assertMainThread();
Preconditions.checkNotNull(target);
if (!isModelSet) { //是否设置了url
...
}
//获取该Target之前的请求任务(如果有的话)
Request previous = target.getRequest();
//如果有,取消该Target之前所有的任务并释放资源(例如bitmap)以备复用
if (previous != null) {
requestManager.clear(target);
}
requestOptions.lock();
//创建请求
Request request = buildRequest(target);
target.setRequest(request);
// TODO:下载图片的任务
requestManager.track(target, request);
return target;
}
Glide的缩略图加载思想,为了更快的展示图片,一般来说,一张图片的加载任务分为全尺寸图片和缩略图两部分,因为缩略图更小,所以一般来说相对于全尺寸图片会加载更快,但不绝对,如果缩略图先加载完则先展示缩略图,然后等全尺寸图片加载完成后再加载全尺寸图片,但是,如果全尺寸图片先于缩略图下载完成,则缩略图则不会展示。
private Request buildRequestRecursive(Target target,
@Nullable ThumbnailRequestCoordinator parentCoordinator,
TransitionOptions, ? super TranscodeType> transitionOptions,
Priority priority,
int overrideWidth,
int overrideHeight) {
//默认的该thumbnailBuilder对象为null,除非手动调用RequestBuilder类的thumbnail方法,
//否则该if代码永远不会执行
if (thumbnailBuilder != null) {
// Recursive case: contains a potentially recursive thumbnail request builder.
if (isThumbnailBuilt) {
throw new IllegalStateException("You cannot use a request as both the main request and a thumbnail, consider using clone() on the request(s) passed to thumbnail()");
}
TransitionOptions, ? super TranscodeType> thumbTransitionOptions = thumbnailBuilder.transitionOptions;
if (DEFAULT_ANIMATION_OPTIONS.equals(thumbTransitionOptions)) {
thumbTransitionOptions = transitionOptions;
}
//缩略图权限
Priority thumbPriority = thumbnailBuilder.requestOptions.isPrioritySet() ? thumbnailBuilder.requestOptions.getPriority() : getThumbnailPriority(priority);
//缩略图宽高
int thumbOverrideWidth = thumbnailBuilder.requestOptions.getOverrideWidth();
int thumbOverrideHeight = thumbnailBuilder.requestOptions.getOverrideHeight();
//宽高校验
if (Util.isValidDimensions(overrideWidth, overrideHeight) && !thumbnailBuilder.requestOptions.isValidOverride()) {
thumbOverrideWidth = requestOptions.getOverrideWidth();
thumbOverrideHeight = requestOptions.getOverrideHeight();
}
//缩略图请求协调器,用来同时协调缩略图和原始图片的请求
ThumbnailRequestCoordinator coordinator = new ThumbnailRequestCoordinator(parentCoordinator);
//原始图片请求
Request fullRequest = obtainRequest(target, requestOptions, coordinator, transitionOptions, priority, overrideWidth, overrideHeight);
isThumbnailBuilt = true;
// Recursively generate thumbnail requests
//递归生成缩略图请求
Request thumbRequest = thumbnailBuilder.buildRequestRecursive(target, coordinator, thumbTransitionOptions, thumbPriority, thumbOverrideWidth, thumbOverrideHeight);
isThumbnailBuilt = false;
coordinator.setRequests(fullRequest, thumbRequest);
return coordinator;
} else if (thumbSizeMultiplier != null) { //根据指定缩放系数加载缩略图
ThumbnailRequestCoordinator coordinator = new ThumbnailRequestCoordinator(parentCoordinator);
Request fullRequest = obtainRequest(target, requestOptions, coordinator, transitionOptions, priority, overrideWidth, overrideHeight);
BaseRequestOptions> thumbnailOptions = requestOptions.clone().sizeMultiplier(thumbSizeMultiplier);
Request thumbnailRequest = obtainRequest(target, thumbnailOptions, coordinator, transitionOptions, getThumbnailPriority(priority), overrideWidth, overrideHeight); coordinator.setRequests(fullRequest, thumbnailRequest);
return coordinator;
} else {
// 只加载原始图片
return obtainRequest(target, requestOptions, parentCoordinator, transitionOptions, priority, overrideWidth, overrideHeight);
}
}
至此,Glide的流程就分析完了,但是!!!和我们之前了解到的Picasso或者Imageloader等图片加载框架不同,我们完全没有看到他的网络请求已经缓存查找的业务逻辑,那这段逻辑究竟在哪呢。我们继续往下看
图片的加载
在上面的最后一步,buildRequestRecursive方法,不管是否有缩略图,我们都会返回一个Request,这个Request会和Target一起被RequestManager接收
void track(Target> target, Request request) {
targetTracker.track(target);
//runRequest最终执行的是Request的begin方法,下面以SingleRequest为例讲解下流程
requestTracker.runRequest(request);
}
@Override
public void begin() {
stateVerifier.throwIfRecycled();
startTime = LogTime.getLogTime();
//如果图片的来源没有设置,则加载失败,来源是指网络,本地硬盘或者资源文件等。
if (model == null) {
if (Util.isValidDimensions(overrideWidth, overrideHeight)) {
width = overrideWidth;
height = overrideHeight;
}
...
onLoadFailed(new GlideException("Received null model"), logLevel);
return;
}
status = Status.WAITING_FOR_SIZE;
//如果Target的宽高已经获取并且合法,则开始进行下一步
if (Util.isValidDimensions(overrideWidth, overrideHeight)) {
onSizeReady(overrideWidth, overrideHeight);
} else { //手动获取Target的宽高
target.getSize(this);
}
if ((status == Status.RUNNING
|| status == Status.WAITING_FOR_SIZE)
&& canNotifyStatusChanged()) {
target.onLoadStarted(getPlaceholderDrawable());
}
if (Log.isLoggable(TAG, Log.VERBOSE)) {
...
}
}
@Override
public void onSizeReady(int width, int height) {
stateVerifier.throwIfRecycled();
...
status = Status.RUNNING;
//计算缩略图的尺寸
float sizeMultiplier = requestOptions.getSizeMultiplier();
this.width = Math.round(sizeMultiplier * width);
this.height = Math.round(sizeMultiplier * height);
...
//加载任务
loadStatus = engine.load(glideContext,
model,
requestOptions.getSignature(),
this.width,
this.height,
requestOptions.getResourceClass(),
transcodeClass,
priority,
requestOptions.getDiskCacheStrategy(),
requestOptions.getTransformations(),
requestOptions.isTransformationRequired(),
requestOptions.getOptions(),
requestOptions.isMemoryCacheable(),
this);
...
}
加载资源
Glide图片的资源加载与其他图片加载框架的加载逻辑类似,都是按照内存,硬盘及网络的顺序来加载图片,但是Glide得加载又稍显不同,他是的逻辑如下:
/**
* 1. 检查内存缓存
* 2. 检查最近的活跃资源
* 3. 检查最近的加载任务
* 活跃资源指的是那些不止一次被加载并没有进行过资源释放的图片,一旦被释放,
* 那么该资源则会从近期活跃资源中删除并进入到内存缓存中,
* 但是如果该资源再次从内存缓存中读取,则会重新添加到活跃资源中
*/
public LoadStatus load(
GlideContext glideContext,
Object model,
Key signature,
int width,
int height,
Class> resourceClass,
Class transcodeClass,
Priority priority,
DiskCacheStrategy diskCacheStrategy,
Map, Transformation>> transformations,
boolean isTransformationRequired,
Options options,
boolean isMemoryCacheable,
ResourceCallback cb) {
Util.assertMainThread();
long startTime = LogTime.getLogTime();
//内存缓存的唯一键值
EngineKey key = keyFactory.buildKey(model, signature, width, height, transformations, resourceClass, transcodeClass, options);
//首先从缓存中查找
EngineResource> cached = loadFromCache(key, isMemoryCacheable);
if (cached != null) {
cb.onResourceReady(cached, DataSource.MEMORY_CACHE);
...
return null;
}
//如果缓存中没有找到,则去活跃资源中加载
//memCache中该bitmap则会被remove掉bitmap并进入activeResource中
EngineResource> active = loadFromActiveResources(key, isMemoryCacheable);
if (active != null) {
cb.onResourceReady(active, DataSource.MEMORY_CACHE);
...
}
return null;
}
//如果该任务之前已经在队列中,则添加新的callback,然后返回
EngineJob current = jobs.get(key);
if (current != null) {
current.addCallback(cb);
...
return new LoadStatus(cb, current);
}
//如果是新的加载任务,先创建EngineJob和DecodeJob,然后开始任务
EngineJob engineJob = engineJobFactory.build(key, isMemoryCacheable);
DecodeJob decodeJob = decodeJobFactory.build(glideContext,model,key,signature,width,height,resourceClass,transcodeClass, priority,diskCacheStrategy,transformations, isTransformationRequired,options,engineJob);
jobs.put(key, engineJob);
engineJob.addCallback(cb);
//开始任务
engineJob.start(decodeJob);
...
return new LoadStatus(cb, engineJob);
}
/**
* DecodeJob 类中run方法的实现,DecodeJob是一个Runnable的实现类
* 该方法的作用是,
* 1.确定数据的加载来源(Resource,Data,Source)
* 2.创建对应来源的DataFetcherGenerator
* 3.执行DataFetcherGenerator
*/
private void runWrapped() {
switch (runReason) {
case INITIALIZE://首次提交
stage = getNextStage(Stage.INITIALIZE); //确定资源的加载来源
currentGenerator = getNextGenerator();
runGenerators();
break;
case SWITCH_TO_SOURCE_SERVICE://从硬盘获取资源失败 ,尝试重新获取
runGenerators();
break;
case DECODE_DATA://获取数据成功,但不在同一线程
decodeFromRetrievedData();
break;
default:
throw new IllegalStateException("Unrecognized run reason: " + runReason);
}
}
/**
* 根据当前阶段获取下一阶段
* Data和Resource的区别:
* Data:原始的图片(或gif)数据
* Resource:经过处理(旋转,缩放)后的数据
* 该方法的大致逻辑如下
* 1.如果是初始状态,则判断是否解码已缓存的Resource,true是解码Resource。
* false的话则会通过递归进入第二个判断分支
* 2.判断是否解码已缓存的Data,true是解码Data
* false的话则会通过递归进入第三个判断分支
* 3.该阶段则需要从数据源去解码。
* 简单的来说,就是根据Resource--->Data--->source的顺序去解码加载数据
* 该阶段Stage的确定,影响着下一阶段DataFetcherGenerator相应子类的实例创建
*/
private Stage getNextStage(Stage current) {
switch (current) {
case INITIALIZE:
return diskCacheStrategy.decodeCachedResource() ? Stage.RESOURCE_CACHE : getNextStage(Stage.RESOURCE_CACHE);
case RESOURCE_CACHE:
return diskCacheStrategy.decodeCachedData() ? Stage.DATA_CACHE : getNextStage(Stage.DATA_CACHE);
case DATA_CACHE:
return Stage.SOURCE;
case SOURCE:
case FINISHED:
return Stage.FINISHED;
default:
throw new IllegalArgumentException("Unrecognized stage: " + current);
}
}
/**
* 根据不同的阶段创建不同的DataFetcherGenerator,该类使用已注册的ModelLoaders和Model
* 来生成一系列的DataFetcher。有如下实现类
* DataFetcherGenerator:经过处理的资源数据缓存文件(采样转换等处理)
* ResourceCacheGenerator:未经处理的资源数据缓存文件
* SourceGenerator:源数据的生成器,包含了根据来源创建的ModelLoader和Model(文件路径,URL...)
*/
private DataFetcherGenerator getNextGenerator() {
switch (stage) {
case RESOURCE_CACHE:
return new ResourceCacheGenerator(decodeHelper, this);
case DATA_CACHE:
return new DataCacheGenerator(decodeHelper, this);
case SOURCE:
return new SourceGenerator(decodeHelper, this);
case FINISHED:
return null;
default:
throw new IllegalStateException("Unrecognized stage: " + stage);
}
}
/**
* 根据不同的状态来选择并执行生成器
* 从当前Generator 获取数据,如果获取成功则直接回调onDataFetcherReady,
* 如果失败则通过reschedule重新调度
*/
private void runGenerators() {
...
boolean isStarted = false;
while (!isCancelled && currentGenerator != null
&& !(isStarted = currentGenerator.startNext())) {
stage = getNextStage(stage);
currentGenerator = getNextGenerator();
if (stage == Stage.SOURCE) {
reschedule();
return;
}
}
// 加载失败
if ((stage == Stage.FINISHED || isCancelled) && !isStarted) {
notifyFailed();
}
}
如果是首次加载一张图片资源,最终会来到SourceGenerator的startNext来执行。
/**
* SourceGenerator
* DataFetcher的简介:Fetcher的意思是抓取,所以该类可以称为数据抓取器
* 作用就是根据不同的数据来源(本地,网络,Asset等)
* 以及读取方式(Stream,ByteBuffer等)来提取并解码数据资源,实现类如下
* AssetPathFetcher:加载Asset数据
* HttpUrlFetcher:加载网络数据
* LocalUriFetcher:加载本地数据
* 其他实现类...
*
*/
@Override
public boolean startNext() {
...
if (sourceCacheGenerator != null && sourceCacheGenerator.startNext()) {
return true;
}
sourceCacheGenerator = null;
loadData = null;
boolean started = false;
//是否有更多的ModelLoader
while (!started && hasNextModelLoader()) {
loadData = helper.getLoadData().get(loadDataListIndex++);
if (loadData != null&& (helper.getDiskCacheStrategy()
.isDataCacheable(loadData.fetcher.getDataSource())
|| helper.hasLoadPath(loadData.fetcher.getDataClass()))) {
started = true;
//选择合适的LoadData,并使用LoadData中的fetcher来抓取数据
loadData.fetcher.loadData(helper.getPriority(), this);
}
}
return started;
}
当走完上面的流程,接下来就是我们最熟悉的网络数据请求的模块了,因为该模块在整个的图片加载流程中并不是很重要,所以就简单介绍一下,不过有几个知识点还是比较有意思的。
/**
* HttpUrlFetcher
* HttpUrlFetcher的简介:网络数据抓取器,通俗的来讲就是去服务器上下载图片,支持地址重定向(最多5次)
*
*/
@Override
public void loadData(Priority priority, DataCallback super InputStream> callback) {
long startTime = LogTime.getLogTime();
final InputStream result;
try {
result = loadDataWithRedirects(glideUrl.toURL(), 0 /*redirects*/, null /*lastUrl*/, glideUrl.getHeaders());
} catch (IOException e) {
...
callback.onLoadFailed(e);
return;
}
...
callback.onDataReady(result);
}
private InputStream loadDataWithRedirects(URL url, int redirects, URL lastUrl,
Map headers) throws IOException {
//重定向次数过多
if (redirects >= MAXIMUM_REDIRECTS) {
throw new HttpException("Too many (> " + MAXIMUM_REDIRECTS + ") redirects!");
} else {
//通过URL的equals方法来比较会导致NetworkI/O开销,一般会有问题,
//有兴趣的同学可以看下下面的链接或者直接阅读URL里equals方法的源码注释,一目了然
//http://michaelscharf.blogspot.com/2006/11/javaneturlequals-and-hashcode-make.html.
try {
if (lastUrl != null && url.toURI().equals(lastUrl.toURI())) {
throw new HttpException("In re-direct loop");
}
} catch (URISyntaxException e) {
// Do nothing, this is best effort.
}
}
//HttpUrlConnection下载图片
...
}
Glide的知识点
接下来,老衲带大家看下Glide中有什么我们在日常开发的时候能用得上的技术
1.线程池内线程的个数的计算方式
/**
* 根据/sys/devices/system/cpu/下的文件来决定线程池内线程的数量
* 决定线程数量的不是一共得CPU核数,而是唤醒的CPU核数
*
* See http://goo.gl/8H670N.
*/
public static int calculateBestThreadCount() {
File[] cpus = null;
try {
File cpuInfo = new File(CPU_LOCATION);
final Pattern cpuNamePattern = Pattern.compile(CPU_NAME_REGEX);
cpus = cpuInfo.listFiles(new FilenameFilter() {
@Override
public boolean accept(File file, String s) {
return cpuNamePattern.matcher(s).matches();
}
});
} catch (Throwable t) {
...
}
int cpuCount = cpus != null ? cpus.length : 0;
int availableProcessors = Math.max(1, Runtime.getRuntime().availableProcessors());
return Math.min(MAXIMUM_AUTOMATIC_THREAD_COUNT, Math.max(availableProcessors, cpuCount));
}
2. 权限判断
以网络请求的权限为例
final int res = context
.checkCallingOrSelfPermission("android.permission.ACCESS_NETWORK_STATE");
final boolean hasPermission = res == PackageManager.PERMISSION_GRANTED;
Glide的懒加载配置
解析Manifest文件中注册的懒加载配置信息
public List parse() {
List modules = new ArrayList<>();
try {
ApplicationInfo appInfo = context.getPackageManager().getApplicationInfo(context.getPackageName(), PackageManager.GET_META_DATA);
if (appInfo.metaData != null) {
for (String key : appInfo.metaData.keySet()) {
if (GLIDE_MODULE_VALUE.equals(appInfo.metaData.get(key))) {
modules.add(parseModule(key));
}
}
}
} catch (PackageManager.NameNotFoundException e) {
...
}
return modules;
}
3. Glide给出的懒加载示例(混淆代码的话请读者自己查看GlideModule类的注释)
public class FlickrGlideModule implements GlideModule {
Override
public void applyOptions(Context context, GlideBuilder builder) {
builder.setDecodeFormat(DecodeFormat.ALWAYS_ARGB_8888);
}
public void registerComponents(Context context, Glide glide) {
glide.register(Model.class, Data.class, new MyModelLoader());
}
}
4. Glide的预填充机制
Glide最核心的部分,就是Bitmap池的使用,
Glide类中有一个preFillBitmapPool方法,用来预填充bitmap对象池,他的注释如下
/**
* 作用:根据给定的尺寸预填充Bitmap对象池
* 缺陷:太多的资源释放会导致GC频繁执行,这样就失去了Glide本身存在的意义。此方法要慎重使用。
* 若太多的Bitmap被添加到对象池使其完全被填满,会导致大多数甚至全部最近被添加的bitmap被驱逐(释放)
* bitmap会根据给定的尺寸的权重来分配,每一种尺寸只会填充对象池所占内存的一定比例。
* 比例的计算公式为weight / prefillWeightSum
*/
public void preFillBitmapPool(PreFillType.Builder... bitmapAttributeBuilders) {
bitmapPreFiller.preFill(bitmapAttributeBuilders);
}
public void preFill(PreFillType.Builder... bitmapAttributeBuilders) {
if (current != null) {
current.cancel();
}
//PreFillType中保存着图片的宽高,Config以及weight等信息
PreFillType[] bitmapAttributes = new PreFillType[bitmapAttributeBuilders.length];
for (int i = 0; i < bitmapAttributeBuilders.length; i++) {
PreFillType.Builder builder = bitmapAttributeBuilders[i];
if (builder.getConfig() == null) {
builder.setConfig(defaultFormat == DecodeFormat.ALWAYS_ARGB_8888
|| defaultFormat == DecodeFormat.PREFER_ARGB_8888? Bitmap.Config.ARGB_8888 : Bitmap.Config.RGB_565);
}
bitmapAttributes[i] = builder.build();
}
//根据PreFillType中保存的图片信息创建预填充队列
PreFillQueue allocationOrder = generateAllocationOrder(bitmapAttributes);
//创建用来填充对象池的线程对象,
//该类通过Handler发布到主线程中尽量避免GC因高比例的Bitmap触发垃圾回收所导致的ANR,
//通过延时减少GC线程的垃圾回收的次数
current = new BitmapPreFillRunner(bitmapPool, memoryCache, allocationOrder);
handler.post(current);
}
// Visible for testing.
PreFillQueue generateAllocationOrder(PreFillType[] preFillSizes) {
//剩余内存
final int maxSize = memoryCache.getMaxSize() - memoryCache.getCurrentSize() + bitmapPool.getMaxSize();
int totalWeight = 0;
//计算图片总权重
for (PreFillType size : preFillSizes) {
totalWeight += size.getWeight();
}
//计算每一份权重占用的字节
final float bytesPerWeight = maxSize / (float) totalWeight;
Map attributeToCount = new HashMap();
for (PreFillType size : preFillSizes) {
//根据权重计算出的图片的内存占用量
int bytesForSize = Math.round(bytesPerWeight * size.getWeight());
//根据宽高和Config计算出的图片的内存占用量
int bytesPerBitmap = getSizeInBytes(size);
int bitmapsForSize = bytesForSize / bytesPerBitmap;
attributeToCount.put(size, bitmapsForSize);
}
return new PreFillQueue(attributeToCount);
}
5. DefaultConnectivityMonitor 网络状态监视器
平常的开发中使用频率还是比较高的,可以直接拿来用,完整代码请参考源码
private final BroadcastReceiver connectivityReceiver = new BroadcastReceiver() {
@Override
public void onReceive(Context context, Intent intent) {
boolean wasConnected = isConnected;
isConnected = isConnected(context);
if (wasConnected != isConnected) {
listener.onConnectivityChanged(isConnected);
}
}
};
public DefaultConnectivityMonitor(Context context, ConnectivityListener listener) {
this.context = context.getApplicationContext();
this.listener = listener;
}
private void register() {
if (isRegistered) {
return;
}
isConnected = isConnected(context);
context.registerReceiver(connectivityReceiver, new IntentFilter(ConnectivityManager.CONNECTIVITY_ACTION));
isRegistered = true;}private void unregister() {
if (!isRegistered) {
return;
}
context.unregisterReceiver(connectivityReceiver);
isRegistered = false;
}
private boolean isConnected(Context context) {
ConnectivityManager connectivityManager = (ConnectivityManager) context
.getSystemService(Context.CONNECTIVITY_SERVICE);
NetworkInfo networkInfo = connectivityManager.getActiveNetworkInfo();
return networkInfo != null && networkInfo.isConnected();
}
@Override
public void onStart() {
register();
}
@Override
public void onStop() {
unregister();
}