- 正则化技术和模型融合等方法提高模型的泛化能力
小赖同学啊
人工智能人工智能
在机器学习和深度学习中,提高模型的泛化能力至关重要,正则化技术和模型融合是两种有效的手段,以下将详细介绍它们的原理、常见方法及代码示例。正则化技术原理正则化是通过在损失函数中添加一个正则化项,来限制模型的复杂度,防止模型过拟合训练数据,从而提高模型在未见过数据上的泛化能力。正则化项通常与模型的参数相关,通过惩罚过大的参数值,使模型更加平滑和简单。常见方法L1正则化(Lasso正则化)原理:在损失函
- Openharmony的编译构建--进阶篇2
procedurecode
openharmony
承接上一篇Openharmony的编译构建--进阶篇1中说明了在OpenharmonyV3.1的如何在标准系统即L2设备添加一个模块的两种情况,此篇对第三种情况进行说明。四、新建子系统并在该子系统的部件下添加模块1.在模块目录下配置BUILD.gn,根据类型选择对应的模板2.新建包含该模块所属部件的bundle.json此前两步与前面介绍的两种方式并无区别。3.修改//build/subsyste
- 双指针专题4:区间最大和
williamzhou_2013
算法c++双指针
描述给定n个正整数组成的数列a1,a2,⋅⋅⋅,an和一个整数m。求出这个数列中的一个子区间[i,j],也就是在这个数列中连续的数字使得这个子区间的和在不超过m的情况下最大。如果有多个区间符合要求,请输出最靠前的那一个区间。输入描述输入共两行。第一行,两个整数n,m;第二行,n个整数a输出描述一行,三个整数,表示符合题意的区间的左端点、右端点和累加和。解释一个样例:mx=-1,l1=-1,r1=-
- 【漫话机器学习系列】101.特征选择法之Lasso(Lasso For Feature Selection)
IT古董
漫话机器学习系列专辑机器学习人工智能
Lasso特征选择法详解1.Lasso回归简介Lasso(LeastAbsoluteShrinkageandSelectionOperator,最小绝对收缩和选择算子)是一种基于L1范数正则化的线性回归方法。它不仅能够提高模型的泛化能力,还可以自动进行特征选择,即将一些不重要的特征的系数收缩到0,从而减少模型的复杂度。2.Lasso回归的数学公式Lasso回归的目标函数如下:其中:是输入数据,w是
- 【计算机体系结构、微架构性能分析】core 与 uncore 分别是哪一些部分?区分 core 和 uncore
Mercury_Lc
#计算机体系结构计算机组成原理#性能工程计算机体系结构微架构性能分析处理器核心core与uncorecoreuncore
在计算机体系结构中,Core和Uncore是描述处理器内部架构的两个重要概念,尤其在多核处理器中更为常见。1.Core(核心)Core指的是处理器中的计算核心,是执行指令和处理数据的基本单元。每个核心都包含独立的执行单元、寄存器、缓存(如L1和L2缓存)以及控制逻辑。多核处理器中,多个核心可以并行执行任务,从而提高计算性能。Core的主要组成部分:算术逻辑单元(ALU):执行算术和逻辑运算。浮点单
- 汽车自动驾驶辅助L2++是什么?
LVXIANGAN
汽车自动驾驶人工智能
自动驾驶辅助级别有哪些?依照SAE(SAEInternational,SocietyofAutomotiveEngineers国际自动机工程师学会)的标准,大致划分为6级(L0-L5):L0人工驾驶:即没有驾驶辅助,需要驾驶员全程对车辆进行控制。L1驾驶辅助:车辆对方向盘和车速中的一项操作进行控制,其他操作则依然由驾驶员负责。常见的例如定速巡航就属于L1级驾驶辅助。L2部分自动驾驶:车辆仅对方向盘
- 深度学习探索-基础篇-正则化篇
神仙盼盼
深度学习入门篇深度学习人工智能
文章目录一、正则化介绍1.1正则化的简介1.2正则化的方法介绍1.3正则化的用途二、正则化的详细介绍2.1L1正则化2.2L2正则化2.2.1L2正则化的工作原理2.2.2如何在训练中应用L2正则化2.2.3L2正则化的效果2.3WeightDecay2.4Dropout一、正则化介绍1.1正则化的简介在深度学习领域中,正则化是一种用于防止过拟合的技术。过拟合是指模型在训练数据上表现良好,但在未见
- Matlab 点云移动最小二乘法(MLS)
大鱼BIGFISH
点云数据处理matlab最小二乘法点云移动最小二乘法(MLS)
文章目录一、简介二、实现代码三、实现效果参考文献一、简介我们要明白MLS是想用一组基函数来局部近似我们的目标函数,它非常类似于我们所学的泰勒公式,只不过它是基于局部的。这里我们以一维的MLS为例,其具体的原理如下所述:假设Ω为范数向量空间,而u为Ω内场变量的标量。为了形成一个近似函数uau^au
- A new method for forward-looking scanning radar imaging based on L1/2 regularization 论文阅读
yangqoor
论文阅读
Anewmethodforforward-lookingscanningradarimagingbasedonL1/2regularization论文阅读内容概述关键创新点1.论文的研究目标研究目标2.新方法的特点与优势传统方法局限L1/2L_{1/2}L1/2正则化的创新优势对比3.实验设计与结果分析实验设置关键结果数据支持可借鉴的创新点与学习建议核心创新点推荐学习路径内容概述该论文提出了一种基
- day_11_java高级编程_泛型_通配符 (560~574)
yangsen116291
java开发语言后端
泛型泛型:标签:将元素类型设置为参数–>泛型相当于预先规定了当前集合存储的数据类型,再使用当前集合时,自动规范数据类型。泛型只能是类,不能是基本数据类型,此类可以是任意类,不一定是包装类,没指定默认为Object当使用泛型后,重写compateTo和compare方法时不再需要(Obiectoinstanceof指定类)再强转了因为集合中的类型已经规定了,不符合的添加不到集合中,所以直接rentu
- 西门子G120变频器调试手册
crown6465
c语言
一、安全须知断电操作:调试前确保变频器断电,并在电源侧悬挂警示牌,避免意外上电。接地保护:确保变频器和电机可靠接地,防止漏电或电磁干扰。环境检查:工作环境温度应低于40°C,湿度低于95%(无凝露),远离粉尘和腐蚀性气体。防护措施:调试时确保电机与机械负载处于安全状态,避免误启动造成人身伤害。二、调试前准备硬件检查检查主回路接线(电源输入L1/L2/L3、电机输出U/V/W)是否正确。确认直流母线
- 如何解决RNN梯度爆炸和弥散的问题
路野yue
机器学习人工智能
1.梯度裁剪(GradientClipping):用于防止梯度爆炸。在每次参数更新之前,计算梯度的范数,如果超过某个阈值,则将梯度缩放到这个阈值。这种方法可以防止梯度在反向传播过程中变得过大。2.使用ReLU激活函数:相比于tanh或sigmoid,ReLU激活函数(及其变种如LeakyReLU)在正区间内梯度恒定,这有助于缓解梯度爆炸问题。但需要注意的是,ReLU也可能导致神经元死亡的问题。3.
- 供应链协作中的文件安全风险,企业如何防范数据泄露?
够快云库
企业数据安全企业文件安全
2025年,全球供应链正加速数字化转型,大量企业通过云平台、协作工具与供应商共享订单、合同、设计文件等关键数据。然而,超过65%的企业在与供应商协作时遭遇过数据泄露问题,供应链成为企业文件安全的“短板”。典型案例:2025年2月,一家全球知名汽车制造商在与外包厂商共享电池供应链数据时,因安全协议漏洞,导致核心设计方案外泄,竞争对手迅速推出相似产品,直接造成3亿美元的损失。在供应链协作过程中,企业机
- 工程计算4——线性方程组的问题敏感性
sda42342342423
math
扰动方程方程组(A+△A)x=b+△b为方程Ax=b的扰动方程△A,△b为由舍入误差所产生的扰动矩阵和扰动向量近似解与Ax=b的解x的相对误差不大称为良态方程,否则为病态方程。向量和矩阵的范数为了研究线性方程组近似解的误差估计和迭代法的收敛性,引入的对向量和矩阵的度量。向量的范数定义设XϵRn,||X||表示定义在Rn上的一个实值函数,称之为X的范数,性质非负性:即对一切X∈Rn,X≠0,||X|
- 04-多核多cluster多系统之间缓存一致性概述
代码改变世界ctw
ARM-TEE-Android缓存cacheDSUarmMMUarm开发armv9
快速链接:.ARMv8/ARMv9架构入门到精通-[目录]付费专栏-付费课程【购买须知】:联系方式-加入交流群----联系方式-加入交流群个人博客笔记导读目录(全部)引流关键词:缓存,高速缓存,cache,CCI,CMN,CCI-550,CCI-500,DSU,SCU,L1,L2,L3,systemcache,Non-cacheable,Cacheable,non-shareable,inner-
- 【人工智能】临时抱佛脚准备明天的人工智能考试,试题与答案汇总
奋力向前123
人工智能人工智能
博主明天参加人工智能相关知识点的考试,于是今天临时抱佛脚从网上找些人工智能相关的试题熟悉熟悉,但愿明天考试能顺利通过,试题与答案汇总简答题解释什么是“过拟合”,并给出一种防止过拟合的方法。过拟合:指模型在训练数据上表现非常好,但在未见过的测试数据上表现很差,即模型学习到了训练数据中的噪声或偶然特征。防止方法:一种常见的方法是正则化(如L1和L2正则化)选择题人工智能的定义中
- 机器学习面试笔试知识点-线性回归、逻辑回归(Logistics Regression)和支持向量机(SVM)
qq742234984
机器学习线性回归逻辑回归
机器学习面试笔试知识点-线性回归、逻辑回归LogisticsRegression和支持向量机SVM微信公众号:数学建模与人工智能一、线性回归1.线性回归的假设函数2.线性回归的损失函数(LossFunction)两者区别3.简述岭回归与Lasso回归以及使用场景4.什么场景下用L1、L2正则化5.什么是ElasticNet回归6.ElasticNet回归的使用场景7.线性回归要求因变量服从正态分布
- OpenCV——边缘检测 Canny
&海哥
OpenCVopencv计算机视觉人工智能
边缘检测函数Canny功能描述:运用边缘检测算子对输入图形的边缘进行检测(根据设定好的最大阈值和最小阈值)并将检测到的边缘显示在输出的图像上。参数释义:参数image:输入图像;参数edges:输出(边缘)图像;参数threshold1:边缘检测的第一个(最小)阈值;参数threshold2:边缘检测的第一个(最大)阈值;参数apertureSize:Sobel算子的大小(默认为3X3);参数L2
- 5G NR协议栈
脚本之家
5G
在移动通信系统(如5GNR和LTE)中,L1、L2、L3是协议栈的分层术语,对应不同的功能层级。以下是具体定义及其在5GNR中的实现:1.层1(L1):物理层(PHY)功能:负责物理信号的传输与接收,直接与无线信道交互。调制/解调(QPSK、16QAM、256QAM等)。信道编码(LDPC、Polar码)与解码。MIMO波束成形、天线阵列处理。资源映射(时域、频域、空域资源分配)。同步、功率控制、
- python zip函数
披风秃头侠
python
使用zip()函数来可以把列表合并,并创建一个元组对的列表我语言表达起来可能有些粗糙,话不多说看示例#示例l1=[1,2,3]lt2=[4,5,6]lt3=zip(l1,lt2)#zip()是可迭代对象,使用时必须将其包含在一个list中,方便一次性显示出所有结果#print(lt3)#print(list(lt3))#print(dict(lt3))lt4=['dd','18','183']lt
- 51单片机独立按键的扩展应用
杜子不疼.
51单片机嵌入式硬件单片机
提示:按键S7和S6为选择键,确定控制键控制那组LED指示灯。按键S5和S4为控制键,按键该键点亮指定的LED指示灯,松开后熄灭。按下S7点亮L1指示灯,L1点亮后,S6不响应操作,S5控制L3,S4控制L4,再次按下S7,L1指示灯熄灭,S6可可响应操作。按下S6点亮L2指示灯,L2点亮后,S7不响应操作,S5控制L5,S4控制L6,再次按下S6,L2指示灯熄灭,S7可可响应操作。S7和S6未按
- python连点器(tkinter版)
2201_75334725
python开发语言
代码如下importpyautoguiaspgimporttimeimporttkinterastkfromtkinterimportmessageboxroot1=tk.Tk()root1.title("连点器")root1.geometry("400x400")l1=tk.Label(root1,text="输入连点次数")l1.pack()e1=tk.Entry(root1,font=30)
- PTA 团体程序设计天梯赛-练习集L1(1~50)
晏尽欢
c/c++学习c++c语言
文章目录-----------------------------------------------1~10-----------------------------------------------L1-001HelloWorldL1-002打印沙漏L1-003个位数统计L1-004计算摄氏温度L1-005考试座位号L1-006连续因子L1-007念数字L1-008求整数段和L1-009N个
- python 链表两数相加
一叶知秋的BLOG
链表算法链表pythonleetcode
|两数相加给你两个非空的链表,表示两个非负的整数。它们每位数字都是按照逆序的方式存储的,并且每个节点只能存储一位数字。请你将两个数相加,并以相同形式返回一个表示和的链表。你可以假设除了数字0之外,这两个数都不会以0开头。输入:l1=[2,4,3],l2=[5,6,4]输出:[7,0,8]解释:342+465=807.示例2:输入:l1=[0],l2=[0]输出:[0]示例3:输入:l1=[9,9,
- 【深度学习】L1损失、L2损失、L1正则化、L2正则化
小小小小祥
深度学习人工智能算法机器学习
文章目录1.L1损失(L1Loss)2.L2损失(L2Loss)3.L1正则化(L1Regularization)4.L2正则化(L2Regularization)5.总结5.1为什么L1正则化会产生稀疏解L2正则化会让权重变小L1损失、L2损失、L1正则化、L2正则化是机器学习中常用的损失函数和正则化技术,它们在优化过程中起着至关重要的作用。它们的作用分别在于如何计算模型误差和如何控制模型的复杂
- Kubernetes 中 BGP 与二层网络的较量:究竟孰轻孰重?
硅基创想家
Kubernetes实战与经验后端
如果你曾搭建过Kubernetes集群,就会知道网络配置是一个很容易让人深陷其中的领域。在负载均衡器、服务通告和IP管理之间,你要同时应对许多变动的因素。对于许多配置而言,使用二层(L2)网络就完全能满足需求。但边界网关协议(BGP)——支撑互联网运行的技术——也逐渐出现在有关Kubernetes的讨论中。那么,为什么人们对在Kubernetes中使用BGP而非二层网络如此兴奋呢?让我们详细剖析一
- 用蓝桥杯单片机实现温度界面与时钟界面转换
安知甜与乐
单片机蓝桥杯单片机职场和发展
1基本功能描述1)通过DS18B20温度传感器,采集环境温度数据,保留小数点后2位有效数字。2)读取DS1302时钟芯片的时、分、秒数据。3)通过数码管显示时间和温度数据,显示界面可以通过按键来回切换。初始化状态说明1)关闭蜂鸣器、继电器。2)数码管处于时间界面。3)实时时钟的初始化时间是00:00:00显示界面状态1)时间界面指示灯L2点亮,其余指示灯熄灭。2)温度界面指示灯L3点亮,其余指示灯
- 机器学习笔记——正则化
好评笔记
补档机器学习人工智能论文阅读AIGC计算机视觉深度学习面试
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本笔记介绍机器学习中常见的正则化方法。文章目录正则化L1正则化(Lasso)原理使用场景优缺点L2正则化(Ridge)原理使用场景优缺点ElasticNet正则化定义公式优点缺点应用场景Dropout原理使用场景优缺点早停法(EarlyStopping)原理使用场景优缺点BatchNormalization(BN)原理使用
- Python 浅拷贝 深拷贝
MIPS71
Python
看《流畅的Python》8.3节默认做浅拷贝,自己动手实践。书中提到的网站http://pythontutor.com是一个可视化编程的网站。csdn不支持图片粘贴,我也是服了,图片全没了。。。一、浅拷贝在http://pythontutor.com/visualize.html#mode=edit下输入:importcopyl1=[3,[66,55,44],(7,8,9)]l2=list(l1)
- hot100_21. 合并两个有序链表
TTXS123456789ABC
BS_算法链表数据结构
将两个升序链表合并为一个新的升序链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。示例1:输入:l1=[1,2,4],l2=[1,3,4]输出:[1,1,2,3,4,4]示例2:输入:l1=[],l2=[]输出:[]示例3:输入:l1=[],l2=[0]输出:[0]迭代思路我们可以用迭代的方法来实现上述算法。当l1和l2都不是空链表时,判断l1和l2哪一个链表的头节点的值更小,将较小值的
- 数据采集高并发的架构应用
3golden
.net
问题的出发点:
最近公司为了发展需要,要扩大对用户的信息采集,每个用户的采集量估计约2W。如果用户量增加的话,将会大量照成采集量成3W倍的增长,但是又要满足日常业务需要,特别是指令要及时得到响应的频率次数远大于预期。
&n
- 不停止 MySQL 服务增加从库的两种方式
brotherlamp
linuxlinux视频linux资料linux教程linux自学
现在生产环境MySQL数据库是一主一从,由于业务量访问不断增大,故再增加一台从库。前提是不能影响线上业务使用,也就是说不能重启MySQL服务,为了避免出现其他情况,选择在网站访问量低峰期时间段操作。
一般在线增加从库有两种方式,一种是通过mysqldump备份主库,恢复到从库,mysqldump是逻辑备份,数据量大时,备份速度会很慢,锁表的时间也会很长。另一种是通过xtrabacku
- Quartz——SimpleTrigger触发器
eksliang
SimpleTriggerTriggerUtilsquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208166 一.概述
SimpleTrigger触发器,当且仅需触发一次或者以固定时间间隔周期触发执行;
二.SimpleTrigger的构造函数
SimpleTrigger(String name, String group):通过该构造函数指定Trigger所属组和名称;
Simpl
- Informatica应用(1)
18289753290
sqlworkflowlookup组件Informatica
1.如果要在workflow中调用shell脚本有一个command组件,在里面设置shell的路径;调度wf可以右键出现schedule,现在用的是HP的tidal调度wf的执行。
2.designer里面的router类似于SSIS中的broadcast(多播组件);Reset_Workflow_Var:参数重置 (比如说我这个参数初始是1在workflow跑得过程中变成了3我要在结束时还要
- python 获取图片验证码中文字
酷的飞上天空
python
根据现成的开源项目 http://code.google.com/p/pytesser/改写
在window上用easy_install安装不上 看了下源码发现代码很少 于是就想自己改写一下
添加支持网络图片的直接解析
#coding:utf-8
#import sys
#reload(sys)
#sys.s
- AJAX
永夜-极光
Ajax
1.AJAX功能:动态更新页面,减少流量消耗,减轻服务器负担
2.代码结构:
<html>
<head>
<script type="text/javascript">
function loadXMLDoc()
{
.... AJAX script goes here ...
- 创业OR读研
随便小屋
创业
现在研一,有种想创业的想法,不知道该不该去实施。因为对于的我情况这两者是矛盾的,可能就是鱼与熊掌不能兼得。
研一的生活刚刚过去两个月,我们学校主要的是
- 需求做得好与坏直接关系着程序员生活质量
aijuans
IT 生活
这个故事还得从去年换工作的事情说起,由于自己不太喜欢第一家公司的环境我选择了换一份工作。去年九月份我入职现在的这家公司,专门从事金融业内软件的开发。十一月份我们整个项目组前往北京做现场开发,从此苦逼的日子开始了。
系统背景:五月份就有同事前往甲方了解需求一直到6月份,后续几个月也完
- 如何定义和区分高级软件开发工程师
aoyouzi
在软件开发领域,高级开发工程师通常是指那些编写代码超过 3 年的人。这些人可能会被放到领导的位置,但经常会产生非常糟糕的结果。Matt Briggs 是一名高级开发工程师兼 Scrum 管理员。他认为,单纯使用年限来划分开发人员存在问题,两个同样具有 10 年开发经验的开发人员可能大不相同。近日,他发表了一篇博文,根据开发者所能发挥的作用划分软件开发工程师的成长阶段。
初
- Servlet的请求与响应
百合不是茶
servletget提交java处理post提交
Servlet是tomcat中的一个重要组成,也是负责客户端和服务端的中介
1,Http的请求方式(get ,post);
客户端的请求一般都会都是Servlet来接受的,在接收之前怎么来确定是那种方式提交的,以及如何反馈,Servlet中有相应的方法, http的get方式 servlet就是都doGet(
- web.xml配置详解之listener
bijian1013
javaweb.xmllistener
一.定义
<listener>
<listen-class>com.myapp.MyListener</listen-class>
</listener>
二.作用 该元素用来注册一个监听器类。可以收到事件什么时候发生以及用什么作为响
- Web页面性能优化(yahoo技术)
Bill_chen
JavaScriptAjaxWebcssYahoo
1.尽可能的减少HTTP请求数 content
2.使用CDN server
3.添加Expires头(或者 Cache-control) server
4.Gzip 组件 server
5.把CSS样式放在页面的上方。 css
6.将脚本放在底部(包括内联的) javascript
7.避免在CSS中使用Expressions css
8.将javascript和css独立成外部文
- 【MongoDB学习笔记八】MongoDB游标、分页查询、查询结果排序
bit1129
mongodb
游标
游标,简单的说就是一个查询结果的指针。游标作为数据库的一个对象,使用它是包括
声明
打开
循环抓去一定数目的文档直到结果集中的所有文档已经抓取完
关闭游标
游标的基本用法,类似于JDBC的ResultSet(hasNext判断是否抓去完,next移动游标到下一条文档),在获取一个文档集时,可以提供一个类似JDBC的FetchSize
- ORA-12514 TNS 监听程序当前无法识别连接描述符中请求服务 的解决方法
白糖_
ORA-12514
今天通过Oracle SQL*Plus连接远端服务器的时候提示“监听程序当前无法识别连接描述符中请求服务”,遂在网上找到了解决方案:
①打开Oracle服务器安装目录\NETWORK\ADMIN\listener.ora文件,你会看到如下信息:
# listener.ora Network Configuration File: D:\database\Oracle\net
- Eclipse 问题 A resource exists with a different case
bozch
eclipse
在使用Eclipse进行开发的时候,出现了如下的问题:
Description Resource Path Location TypeThe project was not built due to "A resource exists with a different case: '/SeenTaoImp_zhV2/bin/seentao'.&
- 编程之美-小飞的电梯调度算法
bylijinnan
编程之美
public class AptElevator {
/**
* 编程之美 小飞 电梯调度算法
* 在繁忙的时间,每次电梯从一层往上走时,我们只允许电梯停在其中的某一层。
* 所有乘客都从一楼上电梯,到达某层楼后,电梯听下来,所有乘客再从这里爬楼梯到自己的目的层。
* 在一楼时,每个乘客选择自己的目的层,电梯则自动计算出应停的楼层。
* 问:电梯停在哪
- SQL注入相关概念
chenbowen00
sqlWeb安全
SQL Injection:就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令。
具体来说,它是利用现有应用程序,将(恶意)的SQL命令注入到后台数据库引擎执行的能力,它可以通过在Web表单中输入(恶意)SQL语句得到一个存在安全漏洞的网站上的数据库,而不是按照设计者意图去执行SQL语句。
首先让我们了解什么时候可能发生SQ
- [光与电]光子信号战防御原理
comsci
原理
无论是在战场上,还是在后方,敌人都有可能用光子信号对人体进行控制和攻击,那么采取什么样的防御方法,最简单,最有效呢?
我们这里有几个山寨的办法,可能有些作用,大家如果有兴趣可以去实验一下
根据光
- oracle 11g新特性:Pending Statistics
daizj
oracledbms_stats
oracle 11g新特性:Pending Statistics 转
从11g开始,表与索引的统计信息收集完毕后,可以选择收集的统信息立即发布,也可以选择使新收集的统计信息处于pending状态,待确定处于pending状态的统计信息是安全的,再使处于pending状态的统计信息发布,这样就会避免一些因为收集统计信息立即发布而导致SQL执行计划走错的灾难。
在 11g 之前的版本中,D
- 快速理解RequireJs
dengkane
jqueryrequirejs
RequireJs已经流行很久了,我们在项目中也打算使用它。它提供了以下功能:
声明不同js文件之间的依赖
可以按需、并行、延时载入js库
可以让我们的代码以模块化的方式组织
初看起来并不复杂。 在html中引入requirejs
在HTML中,添加这样的 <script> 标签:
<script src="/path/to
- C语言学习四流程控制if条件选择、for循环和强制类型转换
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i, j;
scanf("%d %d", &i, &j);
if (i > j)
printf("i大于j\n");
else
printf("i小于j\n");
retu
- dictionary的使用要注意
dcj3sjt126com
IO
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
user.user_id , @"id",
user.username , @"username",
- Android 中的资源访问(Resource)
finally_m
xmlandroidStringdrawablecolor
简单的说,Android中的资源是指非代码部分。例如,在我们的Android程序中要使用一些图片来设置界面,要使用一些音频文件来设置铃声,要使用一些动画来显示特效,要使用一些字符串来显示提示信息。那么,这些图片、音频、动画和字符串等叫做Android中的资源文件。
在Eclipse创建的工程中,我们可以看到res和assets两个文件夹,是用来保存资源文件的,在assets中保存的一般是原生
- Spring使用Cache、整合Ehcache
234390216
springcacheehcache@Cacheable
Spring使用Cache
从3.1开始,Spring引入了对Cache的支持。其使用方法和原理都类似于Spring对事务管理的支持。Spring Cache是作用在方法上的,其核心思想是这样的:当我们在调用一个缓存方法时会把该方法参数和返回结果作为一个键值对存放在缓存中,等到下次利用同样的
- 当druid遇上oracle blob(clob)
jackyrong
oracle
http://blog.csdn.net/renfufei/article/details/44887371
众所周知,Oracle有很多坑, 所以才有了去IOE。
在使用Druid做数据库连接池后,其实偶尔也会碰到小坑,这就是使用开源项目所必须去填平的。【如果使用不开源的产品,那就不是坑,而是陷阱了,你都不知道怎么去填坑】
用Druid连接池,通过JDBC往Oracle数据库的
- easyui datagrid pagination获得分页页码、总页数等信息
ldzyz007
var grid = $('#datagrid');
var options = grid.datagrid('getPager').data("pagination").options;
var curr = options.pageNumber;
var total = options.total;
var max =
- 浅析awk里的数组
nigelzeng
二维数组array数组awk
awk绝对是文本处理中的神器,它本身也是一门编程语言,还有许多功能本人没有使用到。这篇文章就单单针对awk里的数组来进行讨论,如何利用数组来帮助完成文本分析。
有这么一组数据:
abcd,91#31#2012-12-31 11:24:00
case_a,136#19#2012-12-31 11:24:00
case_a,136#23#2012-12-31 1
- 搭建 CentOS 6 服务器(6) - TigerVNC
rensanning
centos
安装GNOME桌面环境
# yum groupinstall "X Window System" "Desktop"
安装TigerVNC
# yum -y install tigervnc-server tigervnc
启动VNC服务
# /etc/init.d/vncserver restart
# vncser
- Spring 数据库连接整理
tomcat_oracle
springbeanjdbc
1、数据库连接jdbc.properties配置详解 jdbc.url=jdbc:hsqldb:hsql://localhost/xdb jdbc.username=sa jdbc.password= jdbc.driver=不同的数据库厂商驱动,此处不一一列举 接下来,详细配置代码如下:
Spring连接池  
- Dom4J解析使用xpath java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
xp9802
用Dom4J解析xml,以前没注意,今天使用dom4j包解析xml时在xpath使用处报错
异常栈:java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
导入包 jaxen-1.1-beta-6.jar 解决;
&nb