序
本文主要研究一下flink DataStream的join操作
实例
stream.join(otherStream)
.where()
.equalTo()
.window()
.apply()
- 这里首先调用join,与另外一个stream合并,返回的是JoinedStreams,之后就可以调用JoinedStreams的where操作来构建Where对象构造条件;Where有equalTo操作可以构造EqualTo,而EqualTo有window操作可以构造WithWindow,而WithWindow可以设置windowAssigner、trigger、evictor、allowedLateness,它提供apply操作
DataStream.join
flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/DataStream.java
@Public
public class DataStream {
//......
/**
* Creates a join operation. See {@link JoinedStreams} for an example of how the keys
* and window can be specified.
*/
public JoinedStreams join(DataStream otherStream) {
return new JoinedStreams<>(this, otherStream);
}
//......
}
- DataStream提供了join方法,用于执行join操作,它返回的是JoinedStreams
JoinedStreams
flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/JoinedStreams.java
@Public
public class JoinedStreams {
/** The first input stream. */
private final DataStream input1;
/** The second input stream. */
private final DataStream input2;
public JoinedStreams(DataStream input1, DataStream input2) {
this.input1 = requireNonNull(input1);
this.input2 = requireNonNull(input2);
}
public Where where(KeySelector keySelector) {
requireNonNull(keySelector);
final TypeInformation keyType = TypeExtractor.getKeySelectorTypes(keySelector, input1.getType());
return where(keySelector, keyType);
}
public Where where(KeySelector keySelector, TypeInformation keyType) {
requireNonNull(keySelector);
requireNonNull(keyType);
return new Where<>(input1.clean(keySelector), keyType);
}
//......
}
- JoinedStreams主要是提供where操作来构建Where对象
Where
flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/JoinedStreams.java
@Public
public class Where {
private final KeySelector keySelector1;
private final TypeInformation keyType;
Where(KeySelector keySelector1, TypeInformation keyType) {
this.keySelector1 = keySelector1;
this.keyType = keyType;
}
public EqualTo equalTo(KeySelector keySelector) {
requireNonNull(keySelector);
final TypeInformation otherKey = TypeExtractor.getKeySelectorTypes(keySelector, input2.getType());
return equalTo(keySelector, otherKey);
}
public EqualTo equalTo(KeySelector keySelector, TypeInformation keyType) {
requireNonNull(keySelector);
requireNonNull(keyType);
if (!keyType.equals(this.keyType)) {
throw new IllegalArgumentException("The keys for the two inputs are not equal: " +
"first key = " + this.keyType + " , second key = " + keyType);
}
return new EqualTo(input2.clean(keySelector));
}
//......
}
- Where对象主要提供equalTo操作用于构建EqualTo对象
EqualTo
flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/JoinedStreams.java
@Public
public class EqualTo {
private final KeySelector keySelector2;
EqualTo(KeySelector keySelector2) {
this.keySelector2 = requireNonNull(keySelector2);
}
/**
* Specifies the window on which the join operation works.
*/
@PublicEvolving
public WithWindow window(WindowAssigner super TaggedUnion, W> assigner) {
return new WithWindow<>(input1, input2, keySelector1, keySelector2, keyType, assigner, null, null, null);
}
}
- EqualTo对象提供window操作用于构建WithWindow对象
WithWindow
/flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/JoinedStreams.java
@Public
public static class WithWindow {
private final DataStream input1;
private final DataStream input2;
private final KeySelector keySelector1;
private final KeySelector keySelector2;
private final TypeInformation keyType;
private final WindowAssigner super TaggedUnion, W> windowAssigner;
private final Trigger super TaggedUnion, ? super W> trigger;
private final Evictor super TaggedUnion, ? super W> evictor;
private final Time allowedLateness;
private CoGroupedStreams.WithWindow coGroupedWindowedStream;
@PublicEvolving
protected WithWindow(DataStream input1,
DataStream input2,
KeySelector keySelector1,
KeySelector keySelector2,
TypeInformation keyType,
WindowAssigner super TaggedUnion, W> windowAssigner,
Trigger super TaggedUnion, ? super W> trigger,
Evictor super TaggedUnion, ? super W> evictor,
Time allowedLateness) {
this.input1 = requireNonNull(input1);
this.input2 = requireNonNull(input2);
this.keySelector1 = requireNonNull(keySelector1);
this.keySelector2 = requireNonNull(keySelector2);
this.keyType = requireNonNull(keyType);
this.windowAssigner = requireNonNull(windowAssigner);
this.trigger = trigger;
this.evictor = evictor;
this.allowedLateness = allowedLateness;
}
@PublicEvolving
public WithWindow trigger(Trigger super TaggedUnion, ? super W> newTrigger) {
return new WithWindow<>(input1, input2, keySelector1, keySelector2, keyType,
windowAssigner, newTrigger, evictor, allowedLateness);
}
@PublicEvolving
public WithWindow evictor(Evictor super TaggedUnion, ? super W> newEvictor) {
return new WithWindow<>(input1, input2, keySelector1, keySelector2, keyType,
windowAssigner, trigger, newEvictor, allowedLateness);
}
@PublicEvolving
public WithWindow allowedLateness(Time newLateness) {
return new WithWindow<>(input1, input2, keySelector1, keySelector2, keyType,
windowAssigner, trigger, evictor, newLateness);
}
public DataStream apply(JoinFunction function) {
TypeInformation resultType = TypeExtractor.getBinaryOperatorReturnType(
function,
JoinFunction.class,
0,
1,
2,
TypeExtractor.NO_INDEX,
input1.getType(),
input2.getType(),
"Join",
false);
return apply(function, resultType);
}
@PublicEvolving
@Deprecated
public SingleOutputStreamOperator with(JoinFunction function) {
return (SingleOutputStreamOperator) apply(function);
}
public DataStream apply(FlatJoinFunction function, TypeInformation resultType) {
//clean the closure
function = input1.getExecutionEnvironment().clean(function);
coGroupedWindowedStream = input1.coGroup(input2)
.where(keySelector1)
.equalTo(keySelector2)
.window(windowAssigner)
.trigger(trigger)
.evictor(evictor)
.allowedLateness(allowedLateness);
return coGroupedWindowedStream
.apply(new FlatJoinCoGroupFunction<>(function), resultType);
}
@PublicEvolving
@Deprecated
public SingleOutputStreamOperator with(FlatJoinFunction function, TypeInformation resultType) {
return (SingleOutputStreamOperator) apply(function, resultType);
}
public DataStream apply(FlatJoinFunction function) {
TypeInformation resultType = TypeExtractor.getBinaryOperatorReturnType(
function,
FlatJoinFunction.class,
0,
1,
2,
new int[]{2, 0},
input1.getType(),
input2.getType(),
"Join",
false);
return apply(function, resultType);
}
@PublicEvolving
@Deprecated
public SingleOutputStreamOperator with(FlatJoinFunction function) {
return (SingleOutputStreamOperator) apply(function);
}
public DataStream apply(JoinFunction function, TypeInformation resultType) {
//clean the closure
function = input1.getExecutionEnvironment().clean(function);
coGroupedWindowedStream = input1.coGroup(input2)
.where(keySelector1)
.equalTo(keySelector2)
.window(windowAssigner)
.trigger(trigger)
.evictor(evictor)
.allowedLateness(allowedLateness);
return coGroupedWindowedStream
.apply(new JoinCoGroupFunction<>(function), resultType);
}
@PublicEvolving
@Deprecated
public SingleOutputStreamOperator with(JoinFunction function, TypeInformation resultType) {
return (SingleOutputStreamOperator) apply(function, resultType);
}
@VisibleForTesting
Time getAllowedLateness() {
return allowedLateness;
}
@VisibleForTesting
CoGroupedStreams.WithWindow getCoGroupedWindowedStream() {
return coGroupedWindowedStream;
}
}
- WithWindow可以设置windowAssigner、trigger、evictor、allowedLateness,它提供apply操作(
with操作被标记为废弃
) - apply操作可以接收JoinFunction或者FlatJoinFunction,它内部是使用DataStream的coGroup方法创建CoGroupedStreams,之后将自身的where及equalTo的keySelector、windowAssigner、trigger、evictor、allowedLateness都设置给CoGroupedStreams,最后调用CoGroupedStreams的WithWindow对象的apply方法
- CoGroupedStreams的WithWindow对象的apply方法与JoinedStreams的WithWindow对象的apply方法参数不同,CoGroupedStreams的WithWindow的apply方法接收的是CoGroupFunction,因而JoinedStreams的WithWindow对象的apply方法内部将JoinFunction或者FlatJoinFunction包装为CoGroupFunction(
JoinFunction使用JoinCoGroupFunction包装,FlatJoinFunction使用FlatJoinCoGroupFunction包装
)传递给CoGroupedStreams的WithWindow的apply方法
JoinFunction
flink-core-1.7.0-sources.jar!/org/apache/flink/api/common/functions/JoinFunction.java
@Public
@FunctionalInterface
public interface JoinFunction extends Function, Serializable {
/**
* The join method, called once per joined pair of elements.
*
* @param first The element from first input.
* @param second The element from second input.
* @return The resulting element.
*
* @throws Exception This method may throw exceptions. Throwing an exception will cause the operation
* to fail and may trigger recovery.
*/
OUT join(IN1 first, IN2 second) throws Exception;
}
- JoinFunction继承了Function、Serializable,它定义了join操作,默认是inner join的语义,如果需要outer join,可以使用CoGroupFunction
FlatJoinFunction
flink-core-1.7.0-sources.jar!/org/apache/flink/api/common/functions/FlatJoinFunction.java
@Public
@FunctionalInterface
public interface FlatJoinFunction extends Function, Serializable {
/**
* The join method, called once per joined pair of elements.
*
* @param first The element from first input.
* @param second The element from second input.
* @param out The collector used to return zero, one, or more elements.
*
* @throws Exception This method may throw exceptions. Throwing an exception will cause the operation
* to fail and may trigger recovery.
*/
void join (IN1 first, IN2 second, Collector out) throws Exception;
}
- FlatJoinFunction继承了Function、Serializable,它定义了join操作,默认是inner join的语义,如果需要outer join,可以使用CoGroupFunction;与JoinFunction的join方法不同,FlatJoinFunction的join方法多了Collector参数,可以用来发射0条、1条或者多条数据,所以是Flat命名
CoGroupedStreams
flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/CoGroupedStreams.java
@Public
public class CoGroupedStreams {
//......
@Public
public static class WithWindow {
private final DataStream input1;
private final DataStream input2;
private final KeySelector keySelector1;
private final KeySelector keySelector2;
private final TypeInformation keyType;
private final WindowAssigner super TaggedUnion, W> windowAssigner;
private final Trigger super TaggedUnion, ? super W> trigger;
private final Evictor super TaggedUnion, ? super W> evictor;
private final Time allowedLateness;
private WindowedStream, KEY, W> windowedStream;
protected WithWindow(DataStream input1,
DataStream input2,
KeySelector keySelector1,
KeySelector keySelector2,
TypeInformation keyType,
WindowAssigner super TaggedUnion, W> windowAssigner,
Trigger super TaggedUnion, ? super W> trigger,
Evictor super TaggedUnion, ? super W> evictor,
Time allowedLateness) {
this.input1 = input1;
this.input2 = input2;
this.keySelector1 = keySelector1;
this.keySelector2 = keySelector2;
this.keyType = keyType;
this.windowAssigner = windowAssigner;
this.trigger = trigger;
this.evictor = evictor;
this.allowedLateness = allowedLateness;
}
@PublicEvolving
public WithWindow trigger(Trigger super TaggedUnion, ? super W> newTrigger) {
return new WithWindow<>(input1, input2, keySelector1, keySelector2, keyType,
windowAssigner, newTrigger, evictor, allowedLateness);
}
@PublicEvolving
public WithWindow evictor(Evictor super TaggedUnion, ? super W> newEvictor) {
return new WithWindow<>(input1, input2, keySelector1, keySelector2, keyType,
windowAssigner, trigger, newEvictor, allowedLateness);
}
@PublicEvolving
public WithWindow allowedLateness(Time newLateness) {
return new WithWindow<>(input1, input2, keySelector1, keySelector2, keyType,
windowAssigner, trigger, evictor, newLateness);
}
public DataStream apply(CoGroupFunction function) {
TypeInformation resultType = TypeExtractor.getCoGroupReturnTypes(
function,
input1.getType(),
input2.getType(),
"CoGroup",
false);
return apply(function, resultType);
}
public DataStream apply(CoGroupFunction function, TypeInformation resultType) {
//clean the closure
function = input1.getExecutionEnvironment().clean(function);
UnionTypeInfo unionType = new UnionTypeInfo<>(input1.getType(), input2.getType());
UnionKeySelector unionKeySelector = new UnionKeySelector<>(keySelector1, keySelector2);
DataStream> taggedInput1 = input1
.map(new Input1Tagger())
.setParallelism(input1.getParallelism())
.returns(unionType);
DataStream> taggedInput2 = input2
.map(new Input2Tagger())
.setParallelism(input2.getParallelism())
.returns(unionType);
DataStream> unionStream = taggedInput1.union(taggedInput2);
// we explicitly create the keyed stream to manually pass the key type information in
windowedStream =
new KeyedStream, KEY>(unionStream, unionKeySelector, keyType)
.window(windowAssigner);
if (trigger != null) {
windowedStream.trigger(trigger);
}
if (evictor != null) {
windowedStream.evictor(evictor);
}
if (allowedLateness != null) {
windowedStream.allowedLateness(allowedLateness);
}
return windowedStream.apply(new CoGroupWindowFunction(function), resultType);
}
//......
}
//......
}
- CoGroupedStreams的整体类结构跟JoinedStreams很像,CoGroupedStreams提供where操作来构建Where对象;Where对象主要提供equalTo操作用于构建EqualTo对象;EqualTo对象提供window操作用于构建WithWindow对象;WithWindow可以设置windowAssigner、trigger、evictor、allowedLateness,它提供apply操作;其中一个不同的地方是CoGroupedStreams定义的WithWindow对象的apply操作接收的Function是CoGroupFunction类型,而JoinedStreams定义的WithWindow对象的apply操作接收的Function类型是JoinFunction或FlatJoinFunction
CoGroupFunction
flink-core-1.7.0-sources.jar!/org/apache/flink/api/common/functions/CoGroupFunction.java
@Public
@FunctionalInterface
public interface CoGroupFunction extends Function, Serializable {
/**
* This method must be implemented to provide a user implementation of a
* coGroup. It is called for each pair of element groups where the elements share the
* same key.
*
* @param first The records from the first input.
* @param second The records from the second.
* @param out A collector to return elements.
*
* @throws Exception The function may throw Exceptions, which will cause the program to cancel,
* and may trigger the recovery logic.
*/
void coGroup(Iterable first, Iterable second, Collector out) throws Exception;
}
- CoGroupFunction继承了Function、Serializable,它定义了coGroup操作,可以用来实现outer join,其参数使用的是Iterable,而JoinFunction与FlatJoinFunction的join参数使用的是单个对象类型
WrappingFunction
flink-java-1.7.0-sources.jar!/org/apache/flink/api/java/operators/translation/WrappingFunction.java
@Internal
public abstract class WrappingFunction extends AbstractRichFunction {
private static final long serialVersionUID = 1L;
protected T wrappedFunction;
protected WrappingFunction(T wrappedFunction) {
this.wrappedFunction = wrappedFunction;
}
@Override
public void open(Configuration parameters) throws Exception {
FunctionUtils.openFunction(this.wrappedFunction, parameters);
}
@Override
public void close() throws Exception {
FunctionUtils.closeFunction(this.wrappedFunction);
}
@Override
public void setRuntimeContext(RuntimeContext t) {
super.setRuntimeContext(t);
FunctionUtils.setFunctionRuntimeContext(this.wrappedFunction, t);
}
public T getWrappedFunction () {
return this.wrappedFunction;
}
}
- WrappingFunction继承了AbstractRichFunction,这里它覆盖了父类的open、close、setRuntimeContext方法,用于管理wrappedFunction
JoinCoGroupFunction
flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/JoinedStreams.java
/**
* CoGroup function that does a nested-loop join to get the join result.
*/
private static class JoinCoGroupFunction
extends WrappingFunction>
implements CoGroupFunction {
private static final long serialVersionUID = 1L;
public JoinCoGroupFunction(JoinFunction wrappedFunction) {
super(wrappedFunction);
}
@Override
public void coGroup(Iterable first, Iterable second, Collector out) throws Exception {
for (T1 val1: first) {
for (T2 val2: second) {
out.collect(wrappedFunction.join(val1, val2));
}
}
}
}
- JoinCoGroupFunction继承了WrappingFunction,同时实现CoGroupFunction接口定义的coGroup方法,默认是遍历第一个集合,对其每个元素遍历第二个集合,挨个执行wrappedFunction.join,然后发射join数据
- JoinedStreams定义了私有静态类JoinCoGroupFunction,JoinedStreams的WithWindow对象的apply方法内部使用它将JoinFunction进行包装,然后去调用CoGroupedStreams的WithWindow的apply方法
- JoinFunction定义的join方法,接收的是两个对象类型参数,而JoinCoGroupFunction定义的coGroup方法,接收的两个Iterable类型参数
FlatJoinCoGroupFunction
flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/JoinedStreams.java
/**
* CoGroup function that does a nested-loop join to get the join result. (FlatJoin version)
*/
private static class FlatJoinCoGroupFunction
extends WrappingFunction>
implements CoGroupFunction {
private static final long serialVersionUID = 1L;
public FlatJoinCoGroupFunction(FlatJoinFunction wrappedFunction) {
super(wrappedFunction);
}
@Override
public void coGroup(Iterable first, Iterable second, Collector out) throws Exception {
for (T1 val1: first) {
for (T2 val2: second) {
wrappedFunction.join(val1, val2, out);
}
}
}
}
- FlatJoinCoGroupFunction继承了WrappingFunction,同时实现CoGroupFunction接口定义的coGroup方法,默认是遍历第一个集合,对其每个元素遍历第二个集合,挨个执行wrappedFunction.join,然后发射join数据
- JoinedStreams定义了私有静态类FlatJoinCoGroupFunction,JoinedStreams的WithWindow对象的apply方法内部使用它将FlatJoinFunction进行包装,然后去调用CoGroupedStreams的WithWindow的apply方法
- FlatJoinFunction定义的join方法,接收的是两个对象类型参数,而FlatJoinCoGroupFunction定义的coGroup方法,接收的两个Iterable类型参数
小结
- DataStream提供了join方法,用于执行join操作,它返回的是JoinedStreams;JoinedStreams主要是提供where操作来构建Where对象;Where对象主要提供equalTo操作用于构建EqualTo对象;EqualTo对象提供window操作用于构建WithWindow对象;WithWindow可以设置windowAssigner、trigger、evictor、allowedLateness,它提供apply操作
- apply操作可以接收JoinFunction或者FlatJoinFunction,它内部是使用DataStream的coGroup方法创建CoGroupedStreams,之后将自身的where及equalTo的keySelector、windowAssigner、trigger、evictor、allowedLateness都设置给CoGroupedStreams,最后调用CoGroupedStreams的WithWindow对象的apply方法;JoinFunction及FlatJoinFunction都继承了Function、Serializable,它定义了join操作,默认是inner join的语义,如果需要outer join,可以使用CoGroupFunction;而FlatJoinFunction与JoinFunction的join的不同之处的在于FlatJoinFunction的join方法多了Collector参数,可以用来发射0条、1条或者多条数据,所以是Flat命名
- CoGroupedStreams的WithWindow对象的apply方法与JoinedStreams的WithWindow对象的apply方法参数不同,CoGroupedStreams的WithWindow的apply方法接收的是CoGroupFunction,因而JoinedStreams的WithWindow对象的apply方法内部将JoinFunction或者FlatJoinFunction包装为CoGroupFunction(
JoinFunction使用JoinCoGroupFunction包装,FlatJoinFunction使用FlatJoinCoGroupFunction包装
),然后去调用CoGroupedStreams的WithWindow的apply方法;JoinCoGroupFunction与FlatJoinCoGroupFunction都继承了WrappingFunction(它继承了AbstractRichFunction,这里它覆盖了父类的open、close、setRuntimeContext方法,用于管理wrappedFunction
),同时实现CoGroupFunction接口定义的coGroup方法,不同的是一个是包装JoinFunction,一个是包装FlatJoinFunction,不同的是后者是包装FlatJoinFunction,因而join方法多传递了out参数
doc
- Joining
- Flink 原理与实现:数据流上的类型和操作
- Flink流计算编程--在双流中体会joinedStream与coGroupedStream