- 深度学习 最简单的神经网络 线性回归网络
用最简单的线性模型讲清神经网络训练全流程,让你5分钟看懂AI是怎么学会预测的1真实神经元结构真实神经元包括:树突接收其他神经元传来的电信号(输入)。细胞核负责整合输入信号并产生动作电位。轴突传导动作电位到下一个神经元。突触释放神经递质,将信号传递给下一个神经元的树突。2线性回归神经网络原理(与神经元对比)假设输入是x_1,x_2,x_3x\_1,x\_2,x\_3x_1,x_2,x_3,权重是w_
- 机器学习20-线性网络思考
坐吃山猪
机器学习机器学习人工智能线性网络
机器学习20-线性网络思考针对线性网络的基础问题,使用基础示例进行解释1-核心知识点1-线性模型家族的线性回归和逻辑回归分别是什么,线性模型家族还有没有其他的模型线性模型家族是一系列基于线性假设的统计模型,它们假设因变量和自变量之间存在线性关系。线性模型家族中的两个最常见模型是线性回归和逻辑回归。线性回归(LinearRegression):线性回归是一种用于预测连续因变量的模型。它假设因变量yy
- LL面试题11
三月七꧁ ꧂
破题·大模型面试语言模型gpt人工智能自然语言处理promptllama
物流算法实习面试题7道GLM是什么? GLM(GeneralizedLinearModel)是一种六义线性模型,用于建立变量之间的关系。它将线性回归模型推广到更广泛的数据分布,可以处理非正态分布的响应变量,如二项分布(逻辑回归)、泊松分布和伽玛分布等。GLM结合线性模型和非线性函数,通过最大似然估计或广义最小二乘估计来拟合模型参数。SVM的原理?怎么找到最优的线性分类器?支持向量是什么?
- 【机器学习】什么是逻辑回归?从入门到精通:掌握逻辑回归与二分类问题的解决之道
宸码
模式识别机器学习机器学习python逻辑回归分类人工智能算法
从入门到精通:掌握逻辑回归与二分类问题的解决之道引言1.1逻辑回归简介1.2逻辑回归的应用场景逻辑回归基本原理2.1逻辑回归概述逻辑回归的基本思想预测类别的概率2.2线性模型与Sigmoid函数线性模型Sigmoid函数Sigmoid函数的性质为什么选择Sigmoid函数2.3逻辑回归的输出:概率值分类决策代价函数与优化数学基础3.1逻辑回归的假设与目标假设目标3.2对数似然函数概率模型对数似然函
- 深度学习中常见激活函数总结
向左转, 向右走ˉ
深度学习人工智能pytorchpython
以下是一份深度学习激活函数的系统总结,涵盖定义、类型、作用、应用及选择影响,便于你快速掌握核心知识:一、激活函数的定义在神经网络中,激活函数(ActivationFunction)是神经元计算输出的非线性变换函数,作用于加权输入和偏置之和:输出=f(加权和+偏置)核心价值:引入非线性,使神经网络能够拟合任意复杂函数(无激活函数的深度网络等价于单层线性模型)。二、常见激活函数类型1.线性函数(Lin
- 机器学习之常用的回归预测模型
曼城周杰伦
机器学习机器学习回归人工智能算法
本文全面整理了各种回归预测模型,旨在帮助读者更好地学习回归预测模型。转载自:https://mp.weixin.qq.com/s/7m2waIASOEg90NONgRpQFQ一.线性模型线性回归是一种线性模型,通过特征的线性组合来预测连续值标签。线性回归通过拟合系数(可选择是否设置截距)的线性模型,以最小化真实值和预测值之间的残差平方和。scikit-learnlinear_models:http
- 30天pytorch从入门到熟练(day1)
一、总体工作思路本项目采用“从零构建”的策略,系统性地开展了深度学习模型的开发与优化工作。其目标在于通过全流程自研方式,深入理解模型构建、训练优化、推理部署的关键技术环节。整体路径分为以下核心阶段:模型初步构建:以最简单的线性模型y=Ax+B为起点,快速搭建数据流通路;数据生成机制设计:构建基于正态分布的可控数据生成器,逐步增加数据复杂度;模型复杂度提升:在逐步提高神经网络深度与宽度的同时,引入残
- 最小二乘法的理论推导
士兵突击许三多
最小二乘法最小二乘法
最小二乘法的理论推导最小二乘法是一种通过最小化误差平方和来估计模型参数的方法。下面我将详细推导线性最小二乘法的理论过程,并给出相应的LaTeX公式。问题描述给定一组观测数据点(xi,yi),i=1,2,...,n(x_i,y_i),i=1,2,...,n(xi,yi),i=1,2,...,n,我们希望找到线性模型:y=ax+by=ax+by=ax+b使得模型预测值与实际观测值之间的误差平方和最小。
- 为什么Sigmoind适用于输出层而不是输入层隐藏层
AI扶我青云志
人工智能
Sigmoid函数在神经网络中的适用性与其数学特性、计算效率及梯度行为密切相关。它更适用于输出层而非隐藏层或输入层,主要基于以下原因:一、Sigmoid的核心特性输出范围压缩Sigmoid函数将任意实数映射到(0,1)区间(公式:)。这种特性使其天然适合表示概率,例如二分类问题中输出“属于正类的概率”。非线性与平滑性作为连续可微的S型曲线,Sigmoid提供非线性转换能力,避免网络退化为线性模型。
- python打卡第52天
知识点回顾:随机种子内参的初始化神经网络调参指南参数的分类调参的顺序各部分参数的调整心得##随机种子importtorchimporttorch.nnasnn#定义简单的线性模型(无隐藏层)#输入2个纬度的数据,得到1个纬度的输出classSimpleNet(nn.Module):def__init__(self):super(SimpleNet,self).__init__()#线性层:2个输入
- 神经元激活函数在神经网络里起着关键作用
MYH516
神经网络人工智能深度学习
神经元激活函数在神经网络里起着关键作用,它能为网络赋予非线性能力,让网络可以学习复杂的函数映射关系。下面从多个方面详细剖析激活函数的作用和意义:1.核心作用:引入非线性因素线性模型的局限性:假设一个简单的神经元没有激活函数,其输出为\(y=w_1x_1+w_2x_2+b\),这本质上是一个线性函数。即便构建多层这样的线性神经元网络,最终的输出依然是输入的线性组合,就像\(y=w_1'x_1+w_2
- 手把手教你学Simulink--多传感器融合与高级滤波场景(50.2):基于卡尔曼滤波(EKF)在非线性系统状态估计中的应用仿真
小蘑菇二号
手把手教你学MATLAB专栏手把手教你学Simulinksimulink
目录一、准备工作二、步骤详解第一步:创建Simulink模型第二步:定义非线性系统模型第三步:设计扩展卡尔曼滤波器(EKF)第四步:实现EKF控制器第五步:整合控制系统第六步:设置参考姿态或轨迹第七步:运行仿真并分析结果注意事项结论扩展卡尔曼滤波(ExtendedKalmanFilter,EKF)是处理非线性系统状态估计的一种常用方法。EKF通过线性化非线性模型来近似标准的卡尔曼滤波过程,从而实现
- Python 在金融中的应用- Part 1
Morpheon
python金融人工智能
早在2018年,我开始对资本市场产生兴趣。理解资本市场的基本理论对财富积累至关重要。我开始阅读所有经典著作,如《聪明的投资者》和《证券分析》。在这一系列文章中,我想与读者分享在Python编程语言背景下理解金融理论的旅程。在文章的第一大部分,我们将专注于金融模型的线性方面,资本资产定价模型(CAPM)、套利定价理论(APT)和线性优化。后续章节将涵盖非线性模型。线性是现实世界的简化版本。它在概念上
- Spark MLlib模型—决策树系列算法
猫猫姐
Spark实战算法spark-ml决策树
文章目录SparkMLlib模型—决策树系列算法决策树系列算法随机森林(RandomForest)GBDT(Gradient-boostedDecisionTrees)总结SparkMLlib模型—决策树系列算法前面我们重点介绍了机器学习中的特征工程,以及SparkMLlib框架支持的特征处理函数。基于线性回归模型,我们对比了不同特征处理方法下的模型效果。一般来说,线性模型的模型容量比较有限,它仅
- MATLAB怎么用命令找模块,MATLAB simulink命令集
神康不是狗
MATLAB怎么用命令找模块
simulink命令集(转载)仿真命令:sim---仿真运行一个simulink模块sldebug---调试一个simulink模块simset---设置仿真参数simget---获取仿真参数线性化和整理命令:linmod---从连续时间系统中获取线性模型(状态方程)linmod2---也是获取线性模型,采用高级方法dinmod---从离散时间系统中获取线性模型trim---为一个仿真系统寻找稳定
- matlab simulink 黑屏,Simulink中的常见问题.doc
MC猪颈肉
matlabsimulink黑屏
Simulink中的常见问题Simulink中的常见问题仿真命令:?sim---仿真运行一个simulink模块?sldebug---调试一个simulink模块?simset---设置仿真参数?simget---获取仿真参数?线性化和整理命令:?linmod---从连续时间系统中获取线性模型(状态方程)?linmod2---也是获取线性模型,采用高级方法?dinmod---从离散时间系统中获取线
- 2篇7章3节:广义加性回归模型的可视化和模型的诊断
R科学与人工智能
用R探索医药数据科学回归数据挖掘人工智能r语言算法开发语言大数据
在现代统计建模与数据科学中,非线性建模方法逐渐取代了传统线性模型在许多实际问题中的地位。广义加性模型(GeneralizedAdditiveModel,GAM)作为一种灵活、解释性强的非线性回归方法,越来越受到研究人员的青睐。本文将通过一个完整的建模流程,结合R语言中mgcv包的使用,系统介绍如何使用模拟数据进行GAM建模、结果可视化与模型诊断,并介绍一种分阶段建模的技巧以提高建模灵活性。一、广义
- 极大似然估计与机器学习
xsddys
机器学习人工智能
复习概统的时候突然发现好像极大似然估计MLE与机器学习的数据驱动非常相似,都是采样样本然后估计模型参数。貌似,后知后觉的才意识到极大似然估计就是机器学习有效的数学保证下面以拟合线性分布的最小二乘与分类问题为例推到以下如何从似然函数推导出MSE损失与交叉熵损失一、线性回归的最小二乘法1.概率模型设定假设数据由线性模型生成,且观测噪声服从正态分布:y=wTx+ϵ,ϵ∼N(0,σ2)y=\mathbf{
- 广义线性模型——Logistic回归模型(1)
吹哨子的喇叭花
r语言数据分析
广义线性模型(GLM)是线性模型的扩展,它通过连接函数建立响应变量的数学期望值与线性组合的预测变量之间的关系。广义线性模型拟合的形式为:其中g(μY)是条件均值的函数(称为连接函数)。另外,你可放松Y为正态分布的假设,改为Y服从指数分布族中的一种分布即可。设定好连接函数和概率分布后,便可以通过最大似然估计的多次迭代推导出各参数值。在大部分情况下,线性模型就可以通过一系列连续型或类别型预测变量来预测
- 02_线性模型(回归线性模型)
白杆杆红伞伞
machinelearning回归数据挖掘人工智能
描述线性模型是在实践中广泛使用的一类模型,线性模型利用输入特征的线性函数(linearfunction)进行预测。用于回归的线性模型对于回归问题,线性模型预测的一般公式如下:$\widehaty=w[0]*x[0]+w[1]*x[1]+…+w[p]*x[p]+b$这里x[0]到x[p]表示单个数据点的特征(本例中特征个数为p+1),w和b是学习模型的参数,$\widehaty$是模型的预测结果。对
- 西瓜书【机器学习(周志华)】目录
随机森林404
机器学习机器学习
第一部分:基础概念机器学习概述1.1人工智能与机器学习1.2机器学习分类1.3机器学习应用1.4机器学习常用术语解释模型的评估与选择2.1经验误差与过拟合2.2评估方法2.3性能度量2.4偏差与方差第二部分:核心算法线性模型3.1什么是回归3.2一元线性回归3.3多元线性回归3.4对数几率回归3.5线性判别分析(LDA)3.6多分类学习3.7类别不平衡问题决策树4.1决策树概述4.2ID3算法4.
- 前馈神经网络回归(ANN Regression)从原理到实战
梁下轻语的秋缘
Python学习人工智能算法神经网络回归人工智能
前馈神经网络回归(ANNRegression)从原理到实战一、回归问题与前馈神经网络的适配性分析在机器学习领域,回归任务旨在建立输入特征与连续型输出变量之间的映射关系。前馈神经网络(FeedforwardNeuralNetwork)作为最基础的神经网络架构,通过多层非线性变换,能够有效捕捉复杂的非线性映射关系,尤其适合处理传统线性模型难以建模的高维、非线性回归问题。1.1回归任务核心特征输出空间连
- 模型部署 - onnx 的导出和分析 - PyTorch 导出 ONNX - 学习记录
Nice_cool.
Onnx与TensorRTpytorch学习人工智能
onnx的导出和分析一、PyTorch导出ONNX的方法1.1、一个简单的例子--将线性模型转成onnx1.2、导出多个输出头的模型1.3、导出含有动态维度的模型二、pytorch导出onnx不成功的时候如何解决2.1、修改opset的版本2.2、替换pytorch中的算子组合2.3、在pytorch登记(注册)onnx中某些算子案例一:2.3.1、注册方法一2.3.2、注册方法二案例二:2.4、
- 数据挖掘技术与应用实验报告(三) —— 应用非线性模型进行客运量预测的实例
小李独爱秋
数据挖掘技术与应用数据挖掘可视化非线性预测模型python
一、实验目的掌握非线性回归模型的基本原理及其在客运量预测中的应用方法,理解非线性模型相较于线性模型的优势与适用场景。通过某省1987—2006年客运量相关数据,分析公路客运量与社会总客运量的变化趋势,探究时间序列中隐含的非线性关系。培养数据建模能力,包括数据预处理、模型参数估计、模型检验及预测分析,为交通规划提供理论支持。二、实验内容根据某省交通统计汇编材料得到下表中所列数据,包括某省1987-2
- 线性回归算法介绍和代码例程
WangLanguager
算法数学算法线性回归机器学习
线性回归算法介绍:线性回归是一种用于建立输入变量与连续输出变量之间线性关系的机器学习算法。其基本思想是通过最小化实际观测值(y)和模型预测值(y_hat)之间的残差平方和来拟合最佳的线性模型。线性回归模型的数学表达式如下:复制代码y=b0+b1*x1+b2*x2+...+bn*xn其中,y是预测值,b0是截距,b1,b2,...,bn是特征的系数,x1,x2,...,xn是输入特征。线性回归适用于
- 神经网络:节点、隐藏层与非线性学习
未来创世纪
机器学习神经网络学习网络
神经网络:节点、隐藏层与非线性学习摘要:神经网络是机器学习领域中一种强大的工具,能够通过复杂的结构学习数据中的非线性关系。本文从基础的线性模型出发,逐步深入探讨神经网络中节点和隐藏层的作用,以及它们如何帮助模型捕捉复杂的模式。通过实例分析和练习,我们将揭示隐藏层在非线性学习中的关键作用,并讨论激活函数在打破线性限制中的重要性。本文旨在为读者提供一个清晰的神经网络学习路径,帮助读者更好地理解和应用这
- pytorch入门案例(来自B站up主刘二大人视频)
侃山
pythonpytorchpytorch人工智能python
1简介选择IDE为pycharm,文中y_hat表示预测值案例如下:已知x=1时,y为2;x=2时,y为4;x=3时,y为6,现利用线性模型(不含偏置量,仅包含斜率参数,即y_hat=w*x)预测x=4时y的值2代码讲解2.1代码总览importtorchx_data=[1.0,2.0,3.0]y_data=[2.0,4.0,6.0]w=torch.tensor([1.0])w.requires_
- 李沐08线性回归和基础算法优化——自学笔记
Rrrrrr900
算法线性回归笔记pytorch深度学习机器学习python
线性回归简化模型输入、权重、偏差、输出给定n维输入:x=[x1,x2,…,xn]^T线性模型有一个n维权重和一个标量偏差:w=[w1,w2,…,wn]^T,b输出是输入的加权和:y=w1x1+w2x2+…+wnxn+b向量版:y=+b平方损失:比较真实值和预估值假设y是真实值,y^是估计值l(y,y)=0.5*(y-y)^2训练数据:收集一些数据点来决定参数值(权重和偏差,过去的值)训练数据通常越
- torch.nn中的非线性激活使用
小白的高手之路
Pytorch实战pytorchpython人工智能深度学习cnn神经网络机器学习
1、神经网络中的非线性激活 在神经网络中,**非线性激活函数(Non-linearActivationFunctions)**是引入非线性变换的关键组件,使神经网络能够学习并建模复杂的非线性关系。如果没有激活函数,无论神经网络有多少层,其整体表现仍等同于一个线性模型(如逻辑回归),无法解决非线性问题(如图像分类、自然语言处理等)。为什么需要非线性激活?打破线性限制:线性变换的叠加仍然是线性的(如
- 机器学习笔记:python中使用sklearn的linear_model回归预测
代码先觉
pythonpythonsklearn
fromsklearnimportlinear_model#LinearRegression拟合一个带有系数w=(w_1,...,w_p)的线性模型,#使得数据集实际观测数据和预测数据(估计值)之间的残差平方和最小。reg=linear_model.LinearRegression()reg.fit([[0,0],[1,2],[2,4]],[0,1,2])print(reg.coef_)print
- 数据采集高并发的架构应用
3golden
.net
问题的出发点:
最近公司为了发展需要,要扩大对用户的信息采集,每个用户的采集量估计约2W。如果用户量增加的话,将会大量照成采集量成3W倍的增长,但是又要满足日常业务需要,特别是指令要及时得到响应的频率次数远大于预期。
&n
- 不停止 MySQL 服务增加从库的两种方式
brotherlamp
linuxlinux视频linux资料linux教程linux自学
现在生产环境MySQL数据库是一主一从,由于业务量访问不断增大,故再增加一台从库。前提是不能影响线上业务使用,也就是说不能重启MySQL服务,为了避免出现其他情况,选择在网站访问量低峰期时间段操作。
一般在线增加从库有两种方式,一种是通过mysqldump备份主库,恢复到从库,mysqldump是逻辑备份,数据量大时,备份速度会很慢,锁表的时间也会很长。另一种是通过xtrabacku
- Quartz——SimpleTrigger触发器
eksliang
SimpleTriggerTriggerUtilsquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208166 一.概述
SimpleTrigger触发器,当且仅需触发一次或者以固定时间间隔周期触发执行;
二.SimpleTrigger的构造函数
SimpleTrigger(String name, String group):通过该构造函数指定Trigger所属组和名称;
Simpl
- Informatica应用(1)
18289753290
sqlworkflowlookup组件Informatica
1.如果要在workflow中调用shell脚本有一个command组件,在里面设置shell的路径;调度wf可以右键出现schedule,现在用的是HP的tidal调度wf的执行。
2.designer里面的router类似于SSIS中的broadcast(多播组件);Reset_Workflow_Var:参数重置 (比如说我这个参数初始是1在workflow跑得过程中变成了3我要在结束时还要
- python 获取图片验证码中文字
酷的飞上天空
python
根据现成的开源项目 http://code.google.com/p/pytesser/改写
在window上用easy_install安装不上 看了下源码发现代码很少 于是就想自己改写一下
添加支持网络图片的直接解析
#coding:utf-8
#import sys
#reload(sys)
#sys.s
- AJAX
永夜-极光
Ajax
1.AJAX功能:动态更新页面,减少流量消耗,减轻服务器负担
2.代码结构:
<html>
<head>
<script type="text/javascript">
function loadXMLDoc()
{
.... AJAX script goes here ...
- 创业OR读研
随便小屋
创业
现在研一,有种想创业的想法,不知道该不该去实施。因为对于的我情况这两者是矛盾的,可能就是鱼与熊掌不能兼得。
研一的生活刚刚过去两个月,我们学校主要的是
- 需求做得好与坏直接关系着程序员生活质量
aijuans
IT 生活
这个故事还得从去年换工作的事情说起,由于自己不太喜欢第一家公司的环境我选择了换一份工作。去年九月份我入职现在的这家公司,专门从事金融业内软件的开发。十一月份我们整个项目组前往北京做现场开发,从此苦逼的日子开始了。
系统背景:五月份就有同事前往甲方了解需求一直到6月份,后续几个月也完
- 如何定义和区分高级软件开发工程师
aoyouzi
在软件开发领域,高级开发工程师通常是指那些编写代码超过 3 年的人。这些人可能会被放到领导的位置,但经常会产生非常糟糕的结果。Matt Briggs 是一名高级开发工程师兼 Scrum 管理员。他认为,单纯使用年限来划分开发人员存在问题,两个同样具有 10 年开发经验的开发人员可能大不相同。近日,他发表了一篇博文,根据开发者所能发挥的作用划分软件开发工程师的成长阶段。
初
- Servlet的请求与响应
百合不是茶
servletget提交java处理post提交
Servlet是tomcat中的一个重要组成,也是负责客户端和服务端的中介
1,Http的请求方式(get ,post);
客户端的请求一般都会都是Servlet来接受的,在接收之前怎么来确定是那种方式提交的,以及如何反馈,Servlet中有相应的方法, http的get方式 servlet就是都doGet(
- web.xml配置详解之listener
bijian1013
javaweb.xmllistener
一.定义
<listener>
<listen-class>com.myapp.MyListener</listen-class>
</listener>
二.作用 该元素用来注册一个监听器类。可以收到事件什么时候发生以及用什么作为响
- Web页面性能优化(yahoo技术)
Bill_chen
JavaScriptAjaxWebcssYahoo
1.尽可能的减少HTTP请求数 content
2.使用CDN server
3.添加Expires头(或者 Cache-control) server
4.Gzip 组件 server
5.把CSS样式放在页面的上方。 css
6.将脚本放在底部(包括内联的) javascript
7.避免在CSS中使用Expressions css
8.将javascript和css独立成外部文
- 【MongoDB学习笔记八】MongoDB游标、分页查询、查询结果排序
bit1129
mongodb
游标
游标,简单的说就是一个查询结果的指针。游标作为数据库的一个对象,使用它是包括
声明
打开
循环抓去一定数目的文档直到结果集中的所有文档已经抓取完
关闭游标
游标的基本用法,类似于JDBC的ResultSet(hasNext判断是否抓去完,next移动游标到下一条文档),在获取一个文档集时,可以提供一个类似JDBC的FetchSize
- ORA-12514 TNS 监听程序当前无法识别连接描述符中请求服务 的解决方法
白糖_
ORA-12514
今天通过Oracle SQL*Plus连接远端服务器的时候提示“监听程序当前无法识别连接描述符中请求服务”,遂在网上找到了解决方案:
①打开Oracle服务器安装目录\NETWORK\ADMIN\listener.ora文件,你会看到如下信息:
# listener.ora Network Configuration File: D:\database\Oracle\net
- Eclipse 问题 A resource exists with a different case
bozch
eclipse
在使用Eclipse进行开发的时候,出现了如下的问题:
Description Resource Path Location TypeThe project was not built due to "A resource exists with a different case: '/SeenTaoImp_zhV2/bin/seentao'.&
- 编程之美-小飞的电梯调度算法
bylijinnan
编程之美
public class AptElevator {
/**
* 编程之美 小飞 电梯调度算法
* 在繁忙的时间,每次电梯从一层往上走时,我们只允许电梯停在其中的某一层。
* 所有乘客都从一楼上电梯,到达某层楼后,电梯听下来,所有乘客再从这里爬楼梯到自己的目的层。
* 在一楼时,每个乘客选择自己的目的层,电梯则自动计算出应停的楼层。
* 问:电梯停在哪
- SQL注入相关概念
chenbowen00
sqlWeb安全
SQL Injection:就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令。
具体来说,它是利用现有应用程序,将(恶意)的SQL命令注入到后台数据库引擎执行的能力,它可以通过在Web表单中输入(恶意)SQL语句得到一个存在安全漏洞的网站上的数据库,而不是按照设计者意图去执行SQL语句。
首先让我们了解什么时候可能发生SQ
- [光与电]光子信号战防御原理
comsci
原理
无论是在战场上,还是在后方,敌人都有可能用光子信号对人体进行控制和攻击,那么采取什么样的防御方法,最简单,最有效呢?
我们这里有几个山寨的办法,可能有些作用,大家如果有兴趣可以去实验一下
根据光
- oracle 11g新特性:Pending Statistics
daizj
oracledbms_stats
oracle 11g新特性:Pending Statistics 转
从11g开始,表与索引的统计信息收集完毕后,可以选择收集的统信息立即发布,也可以选择使新收集的统计信息处于pending状态,待确定处于pending状态的统计信息是安全的,再使处于pending状态的统计信息发布,这样就会避免一些因为收集统计信息立即发布而导致SQL执行计划走错的灾难。
在 11g 之前的版本中,D
- 快速理解RequireJs
dengkane
jqueryrequirejs
RequireJs已经流行很久了,我们在项目中也打算使用它。它提供了以下功能:
声明不同js文件之间的依赖
可以按需、并行、延时载入js库
可以让我们的代码以模块化的方式组织
初看起来并不复杂。 在html中引入requirejs
在HTML中,添加这样的 <script> 标签:
<script src="/path/to
- C语言学习四流程控制if条件选择、for循环和强制类型转换
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i, j;
scanf("%d %d", &i, &j);
if (i > j)
printf("i大于j\n");
else
printf("i小于j\n");
retu
- dictionary的使用要注意
dcj3sjt126com
IO
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
user.user_id , @"id",
user.username , @"username",
- Android 中的资源访问(Resource)
finally_m
xmlandroidStringdrawablecolor
简单的说,Android中的资源是指非代码部分。例如,在我们的Android程序中要使用一些图片来设置界面,要使用一些音频文件来设置铃声,要使用一些动画来显示特效,要使用一些字符串来显示提示信息。那么,这些图片、音频、动画和字符串等叫做Android中的资源文件。
在Eclipse创建的工程中,我们可以看到res和assets两个文件夹,是用来保存资源文件的,在assets中保存的一般是原生
- Spring使用Cache、整合Ehcache
234390216
springcacheehcache@Cacheable
Spring使用Cache
从3.1开始,Spring引入了对Cache的支持。其使用方法和原理都类似于Spring对事务管理的支持。Spring Cache是作用在方法上的,其核心思想是这样的:当我们在调用一个缓存方法时会把该方法参数和返回结果作为一个键值对存放在缓存中,等到下次利用同样的
- 当druid遇上oracle blob(clob)
jackyrong
oracle
http://blog.csdn.net/renfufei/article/details/44887371
众所周知,Oracle有很多坑, 所以才有了去IOE。
在使用Druid做数据库连接池后,其实偶尔也会碰到小坑,这就是使用开源项目所必须去填平的。【如果使用不开源的产品,那就不是坑,而是陷阱了,你都不知道怎么去填坑】
用Druid连接池,通过JDBC往Oracle数据库的
- easyui datagrid pagination获得分页页码、总页数等信息
ldzyz007
var grid = $('#datagrid');
var options = grid.datagrid('getPager').data("pagination").options;
var curr = options.pageNumber;
var total = options.total;
var max =
- 浅析awk里的数组
nigelzeng
二维数组array数组awk
awk绝对是文本处理中的神器,它本身也是一门编程语言,还有许多功能本人没有使用到。这篇文章就单单针对awk里的数组来进行讨论,如何利用数组来帮助完成文本分析。
有这么一组数据:
abcd,91#31#2012-12-31 11:24:00
case_a,136#19#2012-12-31 11:24:00
case_a,136#23#2012-12-31 1
- 搭建 CentOS 6 服务器(6) - TigerVNC
rensanning
centos
安装GNOME桌面环境
# yum groupinstall "X Window System" "Desktop"
安装TigerVNC
# yum -y install tigervnc-server tigervnc
启动VNC服务
# /etc/init.d/vncserver restart
# vncser
- Spring 数据库连接整理
tomcat_oracle
springbeanjdbc
1、数据库连接jdbc.properties配置详解 jdbc.url=jdbc:hsqldb:hsql://localhost/xdb jdbc.username=sa jdbc.password= jdbc.driver=不同的数据库厂商驱动,此处不一一列举 接下来,详细配置代码如下:
Spring连接池  
- Dom4J解析使用xpath java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
xp9802
用Dom4J解析xml,以前没注意,今天使用dom4j包解析xml时在xpath使用处报错
异常栈:java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
导入包 jaxen-1.1-beta-6.jar 解决;
&nb