- Eureka 和 Nacos
简单程序猿
eureka云原生
一、基本介绍EurekaEureka是Netflix公司开发的一款基于REST风格的服务注册与发现组件,专为分布式系统设计。它遵循AP原则(可用性、分区容错性优先),强调在网络分区等异常情况下的服务可用性,是SpringCloudNetflix生态中的核心组件之一。NacosNacos(DynamicNamingandConfigurationService)是阿里巴巴开源的一站式服务发现、配置管
- Python训练 + Go优化 + C#部署:端到端AI模型的跨语言实践
威哥说编程
人工智能学习资料库pythongolangc#
在现代AI应用中,如何高效地训练、优化、并最终部署AI模型是一项复杂且具有挑战性的任务。在这一过程中,选择合适的编程语言和工具可以显著提高效率和系统的性能。Python作为AI领域的主流语言,具有丰富的深度学习框架(如PyTorch和TensorFlow),在模型训练方面处于领先地位。然而,针对计算密集型任务(如数据预处理、加密等),Go语言因其高效的并发处理和出色的性能,成为优化计算的理想选择。
- 全球企业生成式AI应用图谱:601个案例揭示11行业×6类智能体实践,全网最详细!
写在前面:本文为谷歌发布的《601real-worldgenAIusecasesfromtheworld’sleadingorganizations》原文链接为:https://cloud.google.com/transform/101-real-world-generative-ai-use-cases-from-industry-leaders?hl=en以下案例按照“汽车与物流、商业与专用
- 深度强化学习 | 图文详细推导深度确定性策略梯度DDPG算法
Mr.Winter`
机器人人工智能数据挖掘深度学习神经网络强化学习具身智能
目录0专栏介绍1演员-评论家架构1.1Critic网络优化1.2Actor网络优化2深度确定性策略梯度算法0专栏介绍本专栏以贝尔曼最优方程等数学原理为根基,结合PyTorch框架逐层拆解DRL的核心算法(如DQN、PPO、SAC)逻辑。针对机器人运动规划场景,深入探讨如何将DRL与路径规划、动态避障等任务结合,包含仿真环境搭建、状态空间设计、奖励函数工程化调优等技术细节,旨在帮助读者掌握深度强化学
- 边缘计算与量子模型优化驱动医疗诊断新突破
内容概要在医疗人工智能领域,边缘计算与量子模型优化的协同演进正重构诊断系统的技术范式。通过将计算节点前置至医疗设备端,边缘架构有效解决了传统云端模型面临的实时性瓶颈,配合量子优化算法对复杂特征空间的快速寻优能力,使得CT、MRI等高维影像数据的解析效率提升显著。值得关注的是,框架选型直接影响着模型部署的可行性——TensorFlow在移动端推理优化方面的工具链完备性,与PyTorch动态图机制对迭
- 量子生成对抗网络:量子计算与生成模型的融合革命
牧之112
量子计算生成对抗网络人工智能
引言:当生成对抗网络遇上量子计算在人工智能与量子计算双重浪潮的交汇处,量子生成对抗网络(QuantumGenerativeAdversarialNetworks,QGAN)正成为突破经典算力瓶颈的关键技术。传统生成对抗网络(GAN)在图像生成、数据增强等领域已取得辉煌成就,但其参数规模与计算复杂度随着数据维度呈指数级增长。量子计算的叠加性、纠缠性和并行性,为解决这一矛盾提供了全新思路。2025年,
- pytorch图像分类全流程(二)
前人栽树,后人乘凉
datawhalepytorchpytorch分类python
本次使用的是ImageNet1000类别信息,resnet18预训练模型。记录一些一坑和知识点。在传入图片或视频之前我们都会对其进行预处理,归纳下来为四个字母RCTN:缩放、裁剪、转Tensor、归一化,可以使用transforms.Compose()函数打包对应四个函数进行预处理,当然这里有个小坑,transforms.Compose()只接受pillow格式的图像,不能拿opencv传入图片。
- PyTorch图像分类系列——流程概览
VAMOT
PyTorch图像分类系列pytorch深度学习分类计算机视觉
一、加载数据1.使用torchvision.datasets的方法加载经典数据集在此网址查看支持哪些经典数据集:Datasets—Torchvision0.18documentation(pytorch.org)data_train=torchvision.datasets.CIFAR10(root="CIFAR10",train=True,transform=ToTensor(),target_
- tensorflow sigmoid_cross_entropy_with_logits 函数解释及公式推导
CrazyWolf_081c
tensorflowsigmoid_cross_entropy_with_logits函数解释及公式推导tensorflow官方文档解释参考pytorch--BCELosspytorch--BCELoss解释参考定义在tensorflow/python/ops/nn_impl.py.功能:计算在给定logits和label之间的sigmoidcrossentropy。测量离散分类任务中的概率误差,
- Pytorch图像二分类代码 AlexNet
望舒向晚
Pytorchpytorch深度学习机器学习
importtorchimporttorch.nnasnnimporttorch.optimasoptimimporttorch.utils.dataimporttorch.nn.functionalasFimporttorchvisionfromtorchvisionimporttransformsfromPILimportImagedefcheck_image(path):try:im=Ima
- 基于逻辑回归的图像二分类算法实现(Pytorch版)
哎呦哥哥、
图像分类pytorch逻辑回归分类
基于逻辑回归的图像二分类算法实现(Pytorch版)数据集模型代码数据集链接:FastFoodClassificationDataset我们只使用Burger和Pizza这两类。模型代码importtorchimporttorch.nnasnnfromtorchvision.models.utilsimportload_state_dict_from_urlmodel_urls={'resnet5
- 深度学习系列----->环境搭建(Ubuntu)
二师兄用飘柔
深度学习历程深度学习ubuntu人工智能pytorchpython
1、前言电脑基础系统硬件情况:系统:ubuntu18.04、显卡:GTX1050Ti;后续的环境搭建都在此基础上进行。此次学习选择Pytorch作为深度学习的框架,选择的原因主要由于PyTorch在研究领域特别受欢迎,较多的论文框架也是基于其开发。2、anaconda+python3安装测试在学习深度学习的过程中会涉及到使用不同版本python包的问题,而anaconda可以便捷获取包且对包能够进
- 深度学习-常用环境配置
瑶山
AIlinux人工智能windowsCUDAPyTorch
目录Miniconda安装安装NVIDIA显卡驱动安装CUDA和cnDNNCUDAcuDNNPyTorch安装手动下载测试Miniconda安装最新版Miniconda搭建Python环境_miniconda创建python虚拟环境-CSDN博客安装NVIDIA显卡驱动直接进NVIDIA官网:NVIDIAGeForce驱动程序-N卡驱动|NVIDIA在这里有GeForce驱动程序,立即下载,这是下
- 2018 MacBook Pro 安装cuda+cuDNN+pytorch
2018MacBookPro安装cuda+cuDNN+pytorch根据CSDN上的两篇文章和知乎上的一篇文章,前前后后折腾了好几天,在一个小姐姐的帮助下终于装上了。我的环境系统版本:macOS10.13.6(17G10021)GPUDriverVersion:387.10.10.10.40.133CUDADriverVersion:410.130CUDA:cuda_10.0.130cuDNN:c
- Oracle Restore Points
彦祖的小号
Oracleoracle
(一)NormalRestorePoints一般还原点只是给恢复SCN起个别名方便使用,并不会生成类似flashbacklog,存储空间基本为0,并不保证一定能把数据库恢复到此还原点,你可以在RECOVERDATABASE、FLASHBACKDATABASE以及FLASHTALBE中使用CreatinganormalrestorepointassignsarestorepointnametoanS
- 抖音——更有趣的朋友圈
麻天华
配色不错!晚上突然意识到(其实)抖音和朋友圈挺像的,于是有了下面这些对比分析。抖音:用制作小视频的方式丰富广大年轻互联网用户的娱乐生活。朋友圈:用图片、视频等方式分享用户点滴状态,和了解朋友的状态。①:slogan抖音——分享美好生活(解读:立意在愿景,而不是功能:短视频)朋友圈——圈住你我(属于圈友的分享,解读:立意太直白,我起的slogan[Facepalm])QQ空间——分享生活,留住感动?
- 推荐项目: Few-Shot-Adversarial-Learning-for-face-swap
邱晋力
推荐项目:Few-Shot-Adversarial-Learning-for-face-swap去发现同类优质开源项目:https://gitcode.com/1、项目介绍Few-Shot-Adversarial-Learning-for-face-swap是一个基于PyTorch的开源实现,重演了三星AI实验室的一项前沿研究——“Few-ShotAdversarialLearningofReal
- 解读一个大学专业——信号与图像处理
专业定义与核心内容维度内容定义研究如何采集、处理、分析和理解一维信号(语音、雷达、脑电)和二维/三维图像(医学、遥感、工业视觉)。关键词数字信号处理(DSP)、图像处理、计算机视觉、模式识别、压缩感知、深度学习、GPU加速、嵌入式系统。技术栈MATLAB/Python+OpenCV/PyTorch+DSP/FPGA+GPU(CUDA)第五届先进算法与信号、图像处理国际学术会议(AASIP2025)
- 假冒高管!何晓斌蓝碳节能减排恶意带单,亏损被骗无法出金真相!都是套路已挽回!
大盛律道
近期,一场名为“摩根士丹利MorganStanley何晓斌节能减排”的在投资界引发了广泛关注。这场以冒充做慈善投票项目的名义,利用股民贪念,通过诱导投资,实施了一系列的欺诈行为。其中,一个关键角色是自称为“孙亮亮哥”的老师,其操作手法及伎俩让人瞠目结舌。骗子他们的保密协议根本无效,不要惧怕!本身他们的身份都是假的,冒充的,所谓的保密协议,就是为了让你蒙在鼓里被骗,不被身边亲人发现!有受害者反馈:骗
- PyTorch生成式人工智能(18)——循环神经网络详解与实现
盼小辉丶
pytorchrnn自然语言处理
PyTorch生成式人工智能(18)——循环神经网络详解与实现0.前言1.文本生成的挑战2.循环神经网络2.1文本数据2.2循环神经网络原理3.长短期记忆网络3.自然语言处理基础3.1分词3.2词嵌入3.3词嵌入在自然语言处理中的应用小结系列链接0.前言我们已经学习了如何生成数字和图像等内容。从本节开始,我们将主要聚焦于文本生成。人类语言极其复杂且充满细微差别,不仅仅涉及语法和词汇的理解,还包括上
- 为什么用Pytorch帮客户训练好了模型还要提供模型结构?
yuanpan
pytorch人工智能机器学习
如果我在训练模型后生成好了一个模型文件:mnist_model.pth我想把这个模型文件给第三方使用,而不告诉他模型定义的结构等信息,那么第三方是不是就用不起来这个模型?答案:是的。如果只提供.pth文件而不告知模型结构,第三方确实无法直接使用该模型。原因和解决方案如下:1.为什么无法直接使用?.pth文件仅保存参数:torch.save(model.state_dict(),'mnist_mod
- autodl云计算平台 使用ollama 部署lightrag 加入streamlit界面
42fourtytoo
云计算深度学习pytorch学习
1到autodl的算力市场里开一台机器镜像选择:PyTorch2.3.0、Python3.12(ubuntu22.04)、Cuda12.1我本来选择的Cuda12.4,但版本过高疑似会使ollama不使用GPU而只用CPU,后来换个镜像就好了2下载lightrag从lightrag的GitHub界面下载zip开机,上传zip,解压到autodl-tmp/lightrag下安装依赖,在文件夹下:pi
- AWS Certified Cloud Practitioner 认证考试 测试题与解析
DEMI0815
AWSaws大数据云计算
AWSCertifiedCloudPractitioner认证考试测试题与解析SecurityandCompliance(安全性与合规性)TechnologyCloudConcepts(云概念)BillingandPricing(计费与定价)SecurityandCompliance(安全性与合规性)1:Whichofthefollowingisarecommendedwaytoprovidepr
- 2022-08-28
色空世界
细胞离子通道(IonChannel)的作用离子通道是信息在细胞之间传递的工具。离子通道就是可以让带电离子通过的通道。以通道调控方式来区别,则可以分成“配体门控性离子通道”(Ligand-gatedIonChannel)和“电压门控性离子通道”(Voltage-gatedIonChannel)。离子移动的驱动力是电位差。细胞可以通过消耗能量把带电离子主动运送到离子通道的另一端,然后让细胞膜内外的带电
- opencv、torch、torchvision、tensorflow的区别
一、框架定位与核心差异PyTorch动态计算图:实时构建计算图支持Python原生控制流(如循环/条件),调试便捷。学术主导:2025年工业部署份额24%,适合快速原型开发(如无人机自动驾驶、情绪识别)。TensorFlow静态计算图优化:预编译图结构提升部署效率支持动态图(Eager模式)兼顾灵活性。工业部署首选:市场份额38%,擅长边缘计算(YOLO部署)和大规模项目(工业自动化)-59)。O
- PyTorch笔记6----------神经网络案例
HuashuiMu花水木
PyTorch笔记pytorch笔记
1.回归网络波士顿房价预测模型搭建波士顿房价数据集下载链接:百度网盘请输入提取码提取码:5279导入所需包importtorchimportnumpyasnpimportre读取数据ff=open('housing.data').readlines()data=[]foriteminff:out=re.sub(r"\s{2,}","",item).strip()#通过正则表达式去除所有空格data
- 【AI 赋能:Python 人工智能应用实战】5. 梯度下降家族:SGD/Adam优化器对比实验与选择策略
AI_DL_CODE
人工智能python梯度下降优化器SGDAdamPyTorch
摘要:本文系统解析梯度下降优化器的核心原理与演进脉络,构建从理论到实战的完整知识体系。理论部分梳理优化器发展里程碑,从1951年的SGD到2018年的AdamW,揭示技术迭代逻辑;通过数学公式对比SGD、Momentum、Adam等核心算法的更新机制,解析动量加速、自适应学习率的创新点。结合损失曲面分析,阐释Momentum如何逃离鞍点、Adam如何处理悬崖梯度。实战模块基于PyTorch在MNI
- 使用UV管理PyTorch项目
PyTorch是深度学习研究和开发的流行选择。可以使用uv管理PyTorch项目,包括不同Python版本依赖、管理环境、甚至加速器选择等。安装Pytorch从打包角度来看,PyTorch有几个不常见的特点:许多PyTorchwheel托管在专门的索引上,而非Python包索引(PyPI)。因此,安装PyTorch通常需要配置项目使用PyTorch专属索引。PyTorch为每种加速器生成不同的构建
- YOLOv5改进策略|YOLOv5 ⾃主检查和跟踪相关的任务|基于视觉的⽆⼈⽔⾯舰艇⾃主导航 极端海洋条件
斌擎人工智能官方账号
YOLO人工智能YOLOv5目标检测计算机视觉深度学习自主导航
目录介绍解决方案目标检测的视觉结论视觉感知是无人水面舰艇(USV)自主导航的重要组成部分,特别是与自主检查和跟踪相关的任务。这些任务涉及基于视觉的导航技术来识别导航目标。海洋环境中极端天气条件下的能⻅度降低使得基于视觉的方法难以正常工作。为了克服这些问题,本文提出了一种基于视觉的自主导航框架,用于在极端海洋条件下跟踪目标物体。所提出的框架由一个集成感知管道组成,该管道使用生成对抗网络(GAN)来消
- 模型移植实战:从PyTorch到ONNX完整指南
慕婉0307
神经网络pytorch人工智能python
一、认识ONNXONNX(OpenNeuralNetworkExchange)是一种开放的模型表示格式,由微软和Facebook(现Meta)在2017年共同推出,旨在解决深度学习模型在不同框架之间的互操作性问题。ONNX的主要优势包括:跨框架兼容性:支持主流深度学习框架间的模型转换,包括PyTorch、TensorFlow、MXNet、CNTK等例如,可以将PyTorch训练的ResNet模型导
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio