tensorflow基本函数

1.reduce_xxx这类操作,在官方文档中,都放在Reduction下

这些操作的本质就是降维,以xxx的手段降维。在所有reduce_xxx系列操作中,都有reduction_indices这个参数,即沿某个方向,使用xxx方法,对input_tensor进行降维。reduction_indices的默认值是None,即把input_tensor降到 0维,也就是一个数。对于2维input_tensor,reduction_indices=0时,按列(0维);reduction_indices=1时,按行(1维)

import numpy as np
import tensorflow as tf

x = np.array([[1.,2.,3.],[4.,5.,6.]])
sess = tf.Session()

mean1 = sess.run(tf.reduce_mean(x))
mean2 = sess.run(tf.reduce_mean(x, 0))
mean3 = sess.run(tf.reduce_mean(x, 1))

print (mean1)
print (mean2)
print (mean3)

sess.close()
结果 
3.5 
[ 2.5 3.5 4.5] 
[ 2. 5.]

mean1=(1+2+3+4+5+6)/ 6 
mean2=[(1+4)/2,(2+5)/2,(3+6)/2] 
mean3=[(1+2+3)/3,(4+5+6)/3]
tensorflow基本函数_第1张图片

你可能感兴趣的:(tensorflow基本函数)