- ios GCD
_Waiting_
1.GCD任务和队列学习GCD之前,先来了解GCD中两个核心概念:任务和队列。任务:就是执行操作的意思,换句话说就是你在线程中执行的那段代码。在GCD中是放在block中的。执行任务有两种方式:同步执行(sync)和异步执行(async)。两者的主要区别是:是否等待队列的任务执行结束,以及是否具备开启新线程的能力。同步执行(sync):同步添加任务到指定的队列中,在添加的任务执行结束之前,会一直等
- Codeforces Round 969 (Div. 2) C. Dora and C++ (裴蜀定理)
致碑前繁花
刷题记录c语言c++开发语言
什么?竟然是裴蜀定理。。。由于这里给出了a和b两个数,我们或许可以想到使用同样是需要给出两个定值的裴蜀定理,即:如果给定xxx和yyy,那么一定有ax+by=gcd(x,y)ax+by=gcd(x,y)ax+by=gcd(x,y)。所以在这时候我们就可以让输入的所有数都去对gcd(a,b)gcd(a,b)gcd(a,b)取模,这样就能够得到所有数的最简形式(可以当成是让所有数尽可能消去aaa和bb
- PTA:7-32 最小公倍数(递归)
萠哥啥都行
java开发语言
本题目要求读入2个整数a和b,然后输出它们的最小公倍数。输入格式:输入在一行中给出2个正整数,以空格分隔。输出格式:输出最小公倍数。输入样例:在这里给出一组输入。例如:614输出样例:在这里给出相应的输出。例如:42importjava.util.Scanner;publicclassMain{publicstaticintgcd(inta,intb){//辗转相除求最大公约数if(b==0){r
- iOS GCD底层分析(2)--同步异步函数、死锁、GCD单例
冼同学
前言上一篇文章iOSGCD底层分析(1)留下了四个问题,分别是:死锁底层是怎么样子产生的?如果是异步函数,线程是怎样子创建的?底层通过_dispatch_worker_thread2方法完成任务的回调执行,那么触发调用的位置在哪?单例的底层原理是什么?准备工作libdispatch.dylibiOSGCD底层分析(1)1.同步函数上一篇文章中分系同步函数时进入了_dispatch_sync_f_i
- Python【math数学函数】
Alan_Lowe
#Pythonpython
Python【math数学函数】文章目录Python【math数学函数】数论与表示函数1.ceil()和floor()2.comb()3.copysign()4.fabs()5.factorial()6.gcd()7.lcm()幂函数与对数函数1.exp()和math.e和pow()2.log()和log2()和log10()3.sqrt(x)三角函数1.asin、acos()、atan()2.s
- dispatch_once源码分析
福伟_Y
GCD里的单例函数dispatch_once是我们经常会用到的,今天我们来稍做深入分析一下。GCD的源码都在libdispatch.dylib库里,这个库在libSystem_initializer被初始化,可理解为在dyld里被加载和初始化的(之前的文章有分析过)。dispatch_once作为单例的使用入口,通过分析得到它是一个宏定义,_dispatch_once函数在libdispatch.
- python求两个数的最大公约数穷举法_最大公约数GCD算法
weixin_39789101
采用Python实现四种最大公约数(greatestcommondivisor)算法,并比较评估性能。算法原理:1、辗转相除法:已知a,b,c为正整数,若a除以b余c,则GCD(a,b)=GCD(b,c)。2、更相减损术:任意给定两个正整数,若是偶数,则用2约简。以较大的数减较小的数,接着把所得的差与较小的数比较,并以大数减小数。继续这个操作,直到所得的减数和差相等为止。3、除穷举法:将小数依次除
- python用递归方式实现最大公约数_Python - 最大公约数算法
weixin_39765325
#Python3.6#最大公约数,最大公因子#GreatestCommonDivisor#辗转相除法defgcd(num1:object,num2:object)->object:print('num1={},num2={},r={}'.format(num1,num2,num1%num2))ifnum1%num2==0:returnnum2returngcd(num2,num1%num2)#更相
- 【iOS】GCD详解
cheng_lin0201
OCiOSiosobjective-c
初识GCD深入理解GrandCentralDispatch(GCD):iOS多线程编程的利器前言1.GCD简介1.1什么是GCD?1.2为什么使用GCD?2.GCD的核心概念2.1任务与队列2.2串行队列与并发队列3.GCD的API3.1DispatchQueue3.2dispatch_queue_create3.3MainDispatchQueue&GlobalDispatchQueue3.4d
- 数论——扩展欧几里得算法
NOI_yzk
欧几里得&拓展欧几里得(Euclid&Extend-Euclid)欧几里得算法(Euclid)背景:欧几里德算法又称辗转相除法,用于计算两个正整数a,b的最大公约数。——百度百科代码:递推的代码是相当的简洁:intgcd(inta,intb){returnb==0?a:gcd(b,a%b);}分析:方法说了是辗转相除法,自然没有什么好介绍的了。。Fresh肯定会觉得这样递归下去会不会爆栈?实际上在
- 多线程
reboot_q
线程一个进程要想执行任务,就必须开启线程.一个线程同一时间只能执行一个任务(线程内部是串行的).多线程CPU通过操控多个线程切换,并行执行任务!提高效率;线程开销,耗性能,发热耗电;主线程UI线程,刷新UI界面,处理点击事件;防止线程阻塞.FirstHeaderSecondHeaderpthreadCNSThreadOCGCDCNSOperationC线程的状态runnable,running,b
- [SwiftUI 开发] Actor 陷阱
文件夹__iOS
swiftuiiosswift
什么是Actor?在Swift中,actor通过按顺序一次处理一个任务来避免数据竞争。这意味着,尽管你可能已经在多个不同的地方同时调度了对actor的访问,但这些访问不会同时占用actor的状态。这一点类似于串行队列在GCD(GrandCentralDispatch)中的处理方式,但actor提供了更强大和直观的功能。Actor在reentrancy需要注意的问题我们先看一个domeactorCo
- iOS面试题(三)
WinJayQ
1、Objective-C中创建线程的方法是什么?如果在主线程中执行代码,方法是什么?如果想延时执行代码、方法又是什么?线程创建有三种方法:使用NSThread创建、使用GCD的dispatch、使用子类化的NSOperation,然后将其加入NSOperationQueue;在主线程执行代码,方法是performSelectorOnMainThread,如果想延时执行代码可以用performSe
- 第十三届蓝桥杯省赛C&C++ 研究生组
Moliay
蓝桥杯蓝桥杯c语言c++
蓝桥杯2022年第十三届省赛真题-裁纸刀蓝桥杯2022年第十三届省赛真题-灭鼠先锋蓝桥杯2022年第十三届省赛真题-质因数个数求个数,则只需要计数即可。求啥算啥,尽量不要搞多余操作蓝桥杯2022年第十三届省赛真题-选数异或蓝桥杯2022年第十三届省赛真题-GCD蓝桥杯2022年第十三届省赛真题-全排列的价值蓝桥杯2022年第十三届省赛真题-数的拆分蓝桥杯2022年第十三届省赛真题-重复的数
- 坎坎坷坷
我脖子呢
http://47.95.208.3:8089/mobile.html#/?_=bffifjehfegcdaaaa
- Visual Studio清单作用
白衫长发时光与她
vsvisualstudioide
1、作用:制定程序依赖的C运行库的dll及版本,包括mfc,atl,crt等,在VisualStudio安装目录下的vc/redist下有debug和release版本2、确定应用程序依赖哪些visualC++库方法:查看项目-》项目设置-》常规,可以看到项目使用的是MFC和ATL库,如果过选择“在动态库中使用MFC”,则程序依赖MGCdll,如果不使用MFC或ATL,仍然可能依赖CRT库(如果在
- python - 模块
tanyyinyu
python开发语言
root@learning~]#catgcdfunction.py#写一个模块,并调用此模块defgcd(n1,n2):#之前用过的求最大公约数的代码gcd=1k=2whilek<=n1andk<=n2:ifn1%k==0andn2%k==0:gcd=kk=k+1returngcd[root@learning~]#catmodule.py#完整代码fromgcdfunctionimportgcd#
- LeetCode 2427. 公因子的数目
吃着火锅x唱着歌
LeetCodeleetcode算法职场和发展
给你两个正整数a和b,返回a和b的公因子的数目。如果x可以同时整除a和b,则认为x是a和b的一个公因子。示例1:输入:a=12,b=6输出:4解释:12和6的公因子是1、2、3、6。1<=a,b<=1000classSolution{public:intcommonFactors(inta,intb){//找出a和b的最大公因数,其他所有因数都会小于最大公因数intg=gcd(a,b);inti=
- 【洛谷题解】P1029[普及组]最大公约数和最小公倍数问题
杨智123
算法数据结构
题目链接:[NOIP2001普及组]最大公约数和最小公倍数问题-洛谷题目难度:普及-涉及知识点:stl函数,最大公因数,最小公倍数题意:输入输出样例:分析:直接套用公式优化累加即可AC代码:#include//可使用STL函数:__gcd判断最大公因数usingnamespacestd;intmain(){inta,b,ans=0;ios::sync_with_stdio(false);//加快c
- 【Effective Objective - C】—— block 块
《杯莫停》
c语言cocoaios
【EffectiveObjective-C】——block块前言37.理解块的概念块的基础知识块可以捕获变量内联块的用法块的内部结构栈块堆块全局块要点38.为常用的块类型创建typedef要点39.用handler块降低代码分散程度协议传值实现异步块实现异步回调操作里的块要点40.用块引用其所属对象时不要出现保留环块中也存在保留环要点前言本章的内容是比较麻烦复杂的一章,牵扯到了GCD和Block,
- 【iOS】GCD学习
温柔何曾赋我
ios学习
文章目录前言一、什么是GCD二、任务和队列三、GCD基本使用队列的创建任务的创建任务和队列的组合同步任务+串行队列异步任务+串行队列异步任务+并发队列主队列+同步任务主队列+异步任务四、MainDispatchQueue&GlobalDispatchQueue五、dispatch_set_target_queue函数六、dispatch_after七、DispatchGroup八、GCD栅栏方法:
- 利用GCD写了一个倒计时的例子
小小旭
__blockinttimeOut=[endTimeStrintValue];//倒计时时间dispatch_queue_tqueue=dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT,0);dispatch_source_t_timer=dispatch_source_create(DISPATCH_SOURCE_TYPE_TIM
- ARC159B GCD Subtraction
dygxczn
算法
题目这里有一个性质,对于互质的两个数a,ba,ba,b,它们的答案与ag,bgag,bgag,bg两数的答案相等。设ag,bgag,bgag,bg第iii操作减去的数xxx;a,ba,ba,b第iii次操作减去的数为yyy,显然有x=gyx=gyx=gy,前者减去的数是后者的ggg倍,而ag,bgag,bgag,bg又恰好是a,ba,ba,b的ggg倍,得证。所以我们可以先把a,ba,ba,b除以
- Effective Objective-C 学习(四)
糸师凛
objective-c学习ios
掌握GCD及操作队列的使用时机在执行后台任务时,GCD并不一定是最佳方式。还有一种技术叫做NSOperationQueue,它虽然与GCD不同,但是却与之相关,开发者可以把操作以NSOperation子类的形式放在队列中,而这些操作也能够并发执行。GCD是纯C的API,而NSOperationQueue是Objective-C的对象。这意味着使用GCD时,任务通过块(block)来表示,而块是一种
- OJ 求最大公约数和最小公倍数
Tyno
###标题辗转相除法求最大公因数***最小公倍数需要先求最大公约数,然后将两个输入的数除以最大公约数intGCD;//最大公约数greatcommondivisorintLOM;//最小公倍数greatcommonmultipleLOM=a*b*GCD;***`importjava.util.Scanner;publicclassMain{publicstaticvoidmain(String[]
- OJ_求最大公约数和最大公倍数
Listennnn
数据结构与算法算法c语言
欧几里得算法(辗转相除法)求最大公约数这个算法的原理基于以下定理:两个整数的最大公约数等于其中较小的数和两数相除余数的最大公约数#include//GreatestCommonDivisor,简称GCD#define_CRT_SECURE_NO_WARNINGS#include//求最大公约数的函数intgcd(inta,intb){//当b为0时,a就是最大公约数if(b==0){returna
- [算法学习] 贝祖定理
Waldeinsamkeit41
学习
裴蜀定理://设a,b是不全为0的整数,则存在整数x,y使得ax+by=gcd(a,b)//扩展裴蜀定理://a,b为不小于0的整数,n为整数,是否存在不小于0的x和y使得ax+by=n有解?//1、若n>ab-a-b,有解//2、若n=0,有解(x=y=0)//3、若n0//设a和b的最大公约数为gcd(a,b),因为a,b,x,y均为整数,其线性组合同样是gcd(a,b)的倍数//故ax+by
- 扩展欧几里得算法 exgcd 求逆元(适用于模数不为质数的情况)
Waldeinsamkeit41
算法
原理不打算自己懂。。。代码ullexgcd(ulla,ullb,ull&x,ull&y)//扩展欧几里得求模b意义下a的逆元//返回的d是a和b的最大公约数,而最终的x是a在模b意义下的逆元{if(b==0){x=1;y=0;returna;}ulld=exgcd(b,a%b,y,x);y=y-a/b*x;returnd;}exgcd(a,b,x,y);//注意最终x可能返回负数,要加上b变成正数
- 最大公约数和最小公倍数
青年之家
leetcodealgorithmsmath算法
目录一、问题描述二、问题简析2.1最大公约数2.2最小公倍数三、本题代码一、问题描述P1029[NOIP2001普及组]最大公约数和最小公倍数问题二、问题简析2.1最大公约数求两个正整数的最大公约数gcd(greatestcommondivisor),最常用的方法是辗转相除法。//求a和b的最大公约数intgcd(inta,intb){if(b==0)returna;returngcd(a,a%b
- 全定制FPGA硬件电路设计实现最大公约数求取算法(Quartus II)
2402_82964571林
算法fpga开发
目录一、设计需求二、设计工具及版本三、设计原理及结构方案四、电路设计描述1.32位D触发器2.32位多路选择器3.32位减法器4.32位求余电路5.GCDOUT信号产生电路6.DONE_L信号产生电路五、仿真激励设计方案及电路仿真结构六、设计总结当前,FPGA设计在很多场合得到了广泛的应用,如集成电路设计、SoC开发等领域。常规的设计方法采用硬件描述语言或高级综合的方式对功能进行描述,优点是设计周
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理